首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
采用液相包覆法制备了结构致密的铌酸钾钠基[(K0.5Na0.5NbO3-K0.1Na0.4Bi0.5TiO3)-xLiNbO3,0≤x≤0.02]无铅压电陶瓷,研究了掺杂Li+对铌酸钾钠钛酸铋钾钠K0.5Na0.5NbO3-K0.1Na0.4Bi0.5TiO3(KNN-BNKT)晶体结构和压电、介电性能的影响。结果表明:当Li+含量在x取0~0.010(摩尔分数)时,陶瓷样品均形成了均一的钙钛矿型结构。Li+掺杂量对陶瓷压电、介电性能有很大的影响,其压电常数(d33)随着Li+掺杂量的增加先升高后降低,并在x=0.010的时候取得最大值。实验表明:当x=0.01时,(K0.5Na0.5NbO3-K0.1Na0.4Bi0.5TiO3)-xLiNbO3无铅压电陶瓷表现出较好的压电性能:d33=173pC/N,相对介电常数εr=620.745,介电损耗tanδ=0.0132,kp=27.35%,kt=26.34%,Qm=48.97。  相似文献   

2.
采用固相法制备了(1-x)(Na0.5Bi0.5)TiO3-xBa0.5Sr0.5Nb2O6(0≤x≤1.0%)(简称(1-x)NBT-xBSN)无铅压电陶瓷,研究了不同BSN含量(x=0,0.1%,0.3%,0.5%,0.7%,1.0%,摩尔分数)样品的物相组成、显微结构及电性能.结果表明:所有样品均为纯钙钛矿结构,随掺杂量x的增加,陶瓷的相对密度pr、压电常数d33和机电耦合系数kp均先增大后降低,机械品质因子Qm和退极化温度Td则逐渐下降.该体系陶瓷具有弥散相变特征,弥散指数介于1.6~1.7.当x=0.5%时,陶瓷获得最佳性能:d33=92pC/N,kp=0.164,Qm=89,εr=650,tanδ=5.47%,pr=96.5%.  相似文献   

3.
程丽乾  徐泽  王轲 《硅酸盐通报》2019,38(6):1663-166
为了获得压电性能高、稳定性好的无铅压电材料,利用传统固相烧结法制备(Na0.5K0.5)NbO3-(Bi0.5 Li0.5)TiO3-BaZrO3(简称KNN-BLT-BZ)无铅压电陶瓷.通过掺杂不同的氧化物,研究了不同氧化物掺杂对KNN-BLT-BZ无铅压电陶瓷性能的影响.实验表明,利用Ni2O3进行掺杂所得陶瓷的压电及铁电等性能最优:d33=265 pC/N,Qm=109,kp=0.34,tanδ=0.026,Pr=22.4μC/cm2,Ec=1.37 kV/mm,并且具有较高的居里温度(253℃);Fe2O3掺杂则可以明显提高陶瓷应变,促进晶粒长大,提高Qm、d33和室温下εr,降低室温下介电损耗;ZnO掺杂会降低压电陶瓷介电损耗,提高损耗的温度稳定性;掺杂Ag2O后会使陶瓷烧结温度提高.  相似文献   

4.
采用固相法制备了(Na0.5Bi0.5)TiO3+xmol%Y2O3+xmol%Fe2O3(0≤x≤1.25)(简称NBTYF)无铅压电陶瓷。XRD衍射结果表明,所有陶瓷样品均为单一的钙钛矿结构。SEM表明,掺杂后陶瓷的晶粒尺寸增大。介电温谱表明该体系陶瓷具有弛豫特性,随掺杂量的增加,退极化温度Td向低温方向移动,而居里温度Tc向高温方向移动。陶瓷的密度和压电常数d33和随x的增加先增大后减小,而机械品质因子Qm一直下降。当x=1.00时,该体系陶瓷具有最佳压电性能,d33=106pC/N,Qm=93,kp=16.08%,εr=594,tanδ=5.33%,ρ=5.699g/cm3。  相似文献   

5.
采用固相法制备Na0.5Bi4.5Ti4O15+x%Co2O3+y%MnCO3(NBT-CM-x)(y=0.1x)铋层状无铅压电陶瓷,研究了Co、Mn共掺杂对Na0.5Bi4.5Ti4O15陶瓷显微结构和电性能的影响。结果表明:所有样品均为铋层状结构;Co、Mn共掺杂能促进陶瓷晶粒生长;随Co、Mn共掺杂量的增加,Curie温度TC逐渐升高(均在635℃以上);Cole-Cole图出现2个圆弧,表明存在晶粒和晶界效应;适量Co、Mn共掺杂提高了Na0.5Bi4.5Ti4O15陶瓷的压电常数d33、剩余极化强度Pr、机械品质因数Qm和相对介电常数εr,降低了直流电导率σDC和介电损耗tanδ。当x=3.0时,NBT-CM-x陶瓷的综合性能最佳:d33=24pC/N,Pr=11.70μC/cm2,Qm=3 117,εr=198,tanδ=0.19%,kp=9.9%,kt=14.7%,表明该陶瓷材料具有良好的高温应用前景。  相似文献   

6.
采用传统固相法制备了(1-x)K0.5Na0.5NbO3-x(Na0.8K0.2)0.5Bi0.5TiO3(x=0-5%)无铅压电陶瓷,研究了(Na0.8K0.2)0.5Bi0.5TiO3的不同引入量对其物相结构、显微形貌、介电性能以及压电性能的影响。结果表明:所有样品都具有钙钛矿结构;随着x的增加,室温下样品从正交相逐渐向四方相过渡并且居里温度向低温方向移动,样品的压电常数d33与机电耦合系数kp均先升高后降低。该体系多晶型转变PPT位于2%≤x≤3%,当x=3%时,样品的压电性能达到最佳,其中:d33=189pC/N,kp=41%,Qm=96,tanδ=0.028。  相似文献   

7.
采用传统固相法制备了(Na0.8K0.2)0.5Bi0.5TiO3+xmol%Co3+(BNKT-xCo,x=0-8)无铅压电陶瓷,研究了Co2O3掺杂对BNKT陶瓷的显微结构与电学性能的影响。研究表明:适量的Co2O3掺杂促进了晶粒生长,纯BNKT陶瓷样品在介电温谱上有2个介电反常峰Td和Tm,Co2O3掺杂后使所有陶瓷样品的第一个介电反常峰Td消失,表明Co3+抑制铁电-反铁电相变。室温下样品的介电、铁电和压电性能表明Co2O3起硬性掺杂效应。当x=7时陶瓷样品电性能最佳,其中机械品质因子Qm=498,介电损耗tanδ=2.3%(1kHz),压电常数d33=103pC/N,平面机电耦合系数kp=27%。  相似文献   

8.
采用传统固相合成法合成(1-x)(0.945K0.5Na0.5NbO3-0.045LiSbO3)-x(Bi0.5K0.5TiO3)(简记为(KNN-LS)(1-x)-BKTx))无铅压电陶瓷,研究不同BKT掺入量(x=0.000,0.005,0.010,0.015,0.020,0.025,0.030)对该体系陶瓷的微观结构和压电介电性能。结果表明:x≤0.025时,均可形成单一钙钛矿结构;与KNN-LS相比,体积密度(ρ)、机械耦合系数kp、kt显著提高;d33、介电损耗tanδ、机械品质因数Qm和次级相变温度降低;当x=0.020时,样品的整体性能达到最佳值:ρ=4.239g/cm3,d33=94pC/N,kp=30.9%,kt=20.7%,tanδ=0.024,相对介电常数εT33/ε0=2468,Qm=53.95,次级相变温度降至室温以下,温度稳定性好。  相似文献   

9.
以碳酸盐和氧化物为原料,无水乙醇为研磨介质,采用固相法合成压电陶瓷体系0.995Bi0.5(Na0.8K0.2)0.5Ti O3-0.005(Na1-xKx)Sb O3(BNKT-NKS),并对其微结构、表面形貌、电学性能进行了分析测试。结果表明,压电陶瓷样品都能形成单一钙钛矿固溶体结构,具有较好的电学性质:x=30%时,d33=149 p C/N,kp=0.315,Qm=139,tanδ=0.037;x=10%时,tanδ=0.037。  相似文献   

10.
以碳酸盐和氧化物为原料,无水乙醇为研磨介质,采用固相法合成压电陶瓷体系0.995Bi0.5(Na0.8K0.2)0.5Ti O3-0.005(Na1-xKx)Sb O3(BNKT-NKS),并对其微结构、表面形貌、电学性能进行了分析测试。结果表明,压电陶瓷样品都能形成单一钙钛矿固溶体结构,具有较好的电学性质:x=30%时,d33=149 p C/N,kp=0.315,Qm=139,tanδ=0.037;x=10%时,tanδ=0.037。  相似文献   

11.
微波法制备的压电复合材料结构和性能研究   总被引:1,自引:0,他引:1  
利用微波原理合成出性能优良的压电复合材料,并研究了不同合成方法对复合压电材料的结构、介电和压电性能的影响。研究表明,微波合成与热压工艺获得的复合材料性能明显优于冷压工艺,两者的压电应力常数d33均在30pC/N左右。但微波工艺合成的复合材料的界面结合更好,有利于压电陶瓷的极化,其压电电压系数g33达42.8(V.m/N),更适合作为接收型传感器。  相似文献   

12.
压电变压器用锆钛酸铅压电陶瓷材料的研究   总被引:1,自引:0,他引:1  
晏伯武  熊皓 《陶瓷学报》2007,28(2):150-154
综述了压电变压器的原理、其材料的研究进展,分析了其在现阶段存在的问题,并展望了其发展方向.  相似文献   

13.
成型压力对水泥基压电复合材料压电及介电性能的影响   总被引:2,自引:1,他引:1  
以硫铝酸盐水泥为基体,以铌锂锆钛酸铅为功能体,用压制成型法制备了水泥基压电复合材料.研究了不同成型压力对水泥基压电复合材料的压电性能及介电性能的影响规律.结果表明:随着成型压力的增大,复合材料的结构越致密,其压电应变常数d33和相对介电常数εr均增大;而机电耦合性能则变化较小.在40~100 kHz频率范围内,成型压力越大,压电复合材料的介电常数随频率的升高而下降的程度就越显著,低频和高频时的介电常数之差也就越大.  相似文献   

14.
La置换Pb对Sb掺杂PZT压电陶瓷介电和压电性能的影响   总被引:1,自引:1,他引:0  
研究了Pb1–xLax(Zr1–yTiy)1–x/4O3+1.5%(质量分数)Sb2O5陶瓷(PLSZT)的介电、压电性能及其微观结构,获得了高压电性能、小晶粒尺寸的压电陶瓷材料。结果显示:x≤5%时,晶体结构为纯钙钛矿相;x>5%时,为钙钛矿和焦绿石两相混和物。随着x的增大,介电常数和压电常数均呈现先增大后减小的趋势。介电常数在x=6%、y=0.45时最大,最大介电常数εmax≈3900,介电损耗tgδ≈1.8%;压电性能在x=4%、y=0.45时最强,压电应变常数d33≈600pC/N,径向机电耦合系数kp≈0.7,厚度机电耦合系数kt≈0.51,此时的平均晶粒尺寸约为2μm。  相似文献   

15.
压电陶瓷/硫铝酸盐水泥复合材料的压电性及介电性   总被引:4,自引:2,他引:4  
采用水泥作为压电复合材料的基体,可有效解决机敏材料与混凝土母体结构材料之间的相容性问题。用压制法制备了铌锂锆钛酸铅[0.08Pb(Li1/4Nb3/4)O3·0.47PbTiO3·0.45PbZrO3,简称P(ZTNL)]/硫铝酸盐水泥复合材料,分析讨论了P(ZTNL)颗粒粒度和含量对水泥基压电复合材料的压电性和介电性的影响。结果表明:随着P(ZTNL)粒度的增大,复合材料的压电性和介电性均随之增大,但机电耦合系数则减小,当达到一定值后,机电耦合系数趋于稳定。综合分析表明,在所研究的材料中P(ZTNL)粒度应为100μm左右为宜。随着P(ZTNL)含量的增加,压电复合材料的压电常数和介电常数均增大,而介电损耗则减小,只有当P(ZTNL)质量分数超过70%时,水泥基压电复合材料才显示出较好的压电性能。P(ZTNL)的质量分数为85%时,压电复合材料的平面机电耦合系数KP和厚度伸缩机电偶合系数Kt分别为28.54%和28.19%。在-30~100℃范围内,水泥基压电复合材料的介电常数几乎不变,表现出优良的介电稳定性。  相似文献   

16.
采用普通的固相烧结方法制备了LixNa(0.52-x)K0.48NbO3无铅压电陶瓷,研究了陶瓷的显微结构及压电性能。随着Li含量的增加陶瓷烧结温度降低,相结构逐渐由正交相向四方相转变。在x=0.05时,压电常数d33达到117pc/N,平面机电耦合系数kp为36.4%,介电损耗tanδ为0.032。  相似文献   

17.
诸爱珍 《陶瓷学报》2005,26(4):265-268
对添加剂按电价进行了分类,讨论了各类添加剂对锆钛酸铅二元系压电陶瓷性能的影响,分析了各类添加剂对锆钛酸铅二元系压电陶瓷性能的原因。研究表明,各种添加剂的加入量都有一个适宜的范围。  相似文献   

18.
不同压电陶瓷体积分数对1-3-2型压电复合材料性能的影响   总被引:1,自引:0,他引:1  
以环氧树脂为基体,铌镁锆钛酸铅[0.375Pb(Mg1/3Nb2/3)O3·0.375PbTiO3·0.25PbZrO3,PMN]为压电功能体,采用切割-浇注法制备了1-3-2型压电复合材料.分析讨论压电陶瓷体积分数(φ,下同)对1-3-2型压电复合材料压电性能、介电性能及声阻抗的影响.结果表明:随着PMN的φ的增加,复合材料的压电应变常数(d33)和声阻抗(2)增大;相对介电常数(εr)几乎呈线性增加,且当PMN的φ为47.47%时,复合材料的εr=1 660,远小于纯PMN陶瓷的(εr=4000).压电电压常数(g33)及介电损耗(tan δ)则呈下降趋势;与PMN相比较,1-3-2型压电复合材料厚度方向的谐振明显增强,机械品质因数(Qm)显著降低;随着PMN的φ的增加,复合材料的平面机电耦合系数(Kp)减小,而厚度机电耦合系数(Kt)增加.  相似文献   

19.
锰掺杂对PNW-PMS-PZT压电陶瓷结构和性能的影响   总被引:1,自引:1,他引:1  
采用传统陶瓷工艺制备了Pb(Ni1/2W1/2)O3-Pb(Mn1/3Sb2/3)O3-Pb(Ti,Zr)O3-xMnO2压电陶瓷,分析了经1150℃烧结2h制备的陶瓷样品的相结构组成。实验结果表明:所有陶瓷样品均为钙钛矿相,未发现其它晶相。随着锰掺杂量的增加,陶瓷晶粒逐渐长大。研究了不同剂量的锰掺杂对压电陶瓷介电和压电性能的影响。结果表明:随着锰掺杂量的增加,材料逐渐变“硬”,当MnO2掺杂量少于0.2%(按质量计,下同)时,相对介电常数εr、压电常数d33和机械品质因数Qm逐渐增加,介电损耗tanδ减小;当MnO2掺杂量多于0.2%时,εr、d33和Qm逐渐降低,tanδ增加。随着锰掺杂量的增加,机电耦合系数kp和Curie温度θc逐渐减小。MnO2掺杂量为0.2%的压电陶瓷适合制作大功率压电陶瓷变压器。其压电性能为:εr=2138,tanδ=0.0058,kp=0.613,Qm=1275,d33=380pC/N和θc=205℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号