首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Pathfinder AVHHR Land (PAL) database has been used for the retrieval of Land Surface Temperature (LST) over South America, which, along with NDVI parameter, will allow the studying of the evolution of the vegetation between July 1981 and September 2001. To this end, a classification has been built, based on PAL NDVI and Reanalysis air temperature at 2 m height data. This classification takes into account both vegetation and thermal patterns, and has been validated by a comparison with CAZALAC's map of arid zones (Centro del Agua para Zonas Áridas y semiáridas de Latino-América y el Caribe), as well as with Global Land Cover Characteristics' classification built by the USGS (United States Geological Survey). The principal advantage of this new classification is that it is a dynamic classification, that considers the actual state of the cover, since no assumption on land occupation is made for its construction. LST and NDVI yearly and long-term evolutions are analyzed with the help of this classification. Yearly evolutions are compared with Reanalysis air temperature at 2 m height and precipitation, and show good concordance. LST long-term evolution shows to be strongly affected by satellite changes and orbital drift. These latter require an adequate correction to allow deeper study. On the other hand, NDVI does not show this trend, but aerosol absorption from Mount Pinatubo's eruption in June 1991 corrupts temporarily the data. These results also validate the above-mentioned classification.  相似文献   

2.
The role of tropical ecosystems in global carbon cycling is uncertain, at least partially due to an incomplete understanding of climatic forcings of carbon fluxes. To reduce this uncertainty, we simulated and analyzed 1982–1999 Amazonian, African, and Asian carbon fluxes using the Biome-BGC prognostic carbon cycle model driven by National Centers for Environmental Prediction reanalysis daily climate data. We first characterized the individual contribution of temperature, precipitation, radiation, and vapor pressure deficit to interannual variations in carbon fluxes and then calculated trends in gross primary productivity (GPP) and net primary productivity (NPP). In tropical ecosystems, variations in solar radiation and, to a lesser extent, temperature and precipitation, explained most interannual variation in GPP. On the other hand, temperature followed by solar radiation primarily determined variation in NPP. Tropical GPP gradually increased in response to increasing atmospheric CO2. Confirming earlier studies, changes in solar radiation played a dominant role in CO2 uptake over the Amazon relative to other tropical regions. Model results showed negligible impacts from variations and trends in precipitation or vapor pressure deficits on CO2 uptake.  相似文献   

3.
In this study, we report on the validation of process-based forest growth and carbon and nitrogen model of TRIPLEX against observed data, and the use of the model to investigate the potential impacts and interaction of climate change and increasing atmospheric CO2 on forest net primary productivity (NPP) and carbon budgets in northeast of China. The model validation results show that the simulated tree total volume, NPP, total biomass and soil carbon are consistent with observed data across the Northeast of China, demonstrating that the improved TRIPLEX model is able to simulate forest growth and carbon dynamics of the boreal and temperate forest ecosystems at regional scale. The climate change would increase forest NPP and biomass carbon but decrease overall soil carbon under all three climate change scenarios. The combined effects of climate change and CO2 fertilization on the increase of NPP were estimated to be 10–12% for 2030s and 28–37% in 2090s. The simulated effects of CO2 fertilization significantly offset the soil carbon loss due to climate change alone. Overall, future climate change and increasing atmospheric CO2 would have a significant impact on the forest ecosystems of Northeastern China.  相似文献   

4.
The history (45–0 ka BP) of the aquatic vegetation composition of the shallow alpine Lake Luanhaizi from the NE Tibetan Plateau is inferred from aquatic plant macrofossil frequencies and aquatic pollen and algae concentrations in the sediments. C/N (range: 0.3–100), δ13C (range: −28 to −15‰), and n-alkane measurements yielded further information on the quantitative composition of sedimentary organic matter. The inferred primary production of the former lake ecosystem has been examined in respect of the alternative stable state theory of shallow lakes [Scheffer, M., 1989. Alternative stable states in eutrophic, shallow freshwater systems: a minimal model. Hydrobiological Bulletin 23, 73–83]. Switches between clear and turbid water conditions are explained by a colder climate and forest decline in the catchment area of Lake Luanhaizi. The macrofossil-based reconstruction of past water depth and salinity ranges, as well as other organic matter (OM) proxies allowed climatic inferences of the summer monsoon intensity during the late Quaternary. Around 45 ka BP, conditions similar to or even moister than present-day climate occurred. The Lake Luanhaizi record is further evidence against an extensive glaciation of the Tibetan Plateau and its bordering mountain ranges during the Last Glacial Maximum. Highest lake levels and consequently a strong summer monsoon are recorded for the early Holocene period, while gradually decreasing lake levels are reconstructed for the middle and late Holocene.  相似文献   

5.
We measured the δ18O values of the whole shells of the cavernicolous micro-bivalvia Carditella iejimensis obtained from sediments within a submarine cave (31 m water depth) at Ie Island (Okinawa Island, Japan) in the subtropical Northwest Pacific. Our results show no significant millennial-scale trend in the δ18O record, implying that both springtime temperature and the δ18O of sea water at 30 m depth around the Okinawa Islands have been stable for the past 3000 years at values similar to those of today. Moreover, we found one exceptionally light δ18O value from specimens spanning the past 250 years. The δ18O-derived temperature represents a departure of 2.1 °C from the average value for the past 250 years, being equal to the departure recorded during unusually high temperatures in the spring of 1998. This finding may imply that such high springtime sea surface temperature has been a rare event over the past 3000 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号