首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenorhabdus luminescens, a newly isolated luminous bacterium collected from a human wound, was characterized. The effects of ionic strength, temperature, oxygen, and iron on growth and development of the bioluminescent system were studied. The bacteria grew and emitted light best at 33 degrees C in a medium with low salt, and the medium after growth of cells to a high density was found to have antibiotic activity. The emission spectrum peaked at 482 nm in vivo and at 490 nm in vitro. Both growth and the development of luminescence in X. luminescens required oxygen and iron. The isolated luciferase itself exhibited a temperature optimum at about 40 degrees C; after purification by affinity chromatography, it showed two bands (52 and 41 kilodaltons) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicative of an alpha and beta subunit structure. Reduced flavin mononucleotide (Km of 1.4 microM) and tetradecanal (Km of 2.1 microM) were the best substrates for the luciferase, and the first-order decay constant under these conditions at 37 degrees C was 0.79 s-1.  相似文献   

2.
L Xi  K W Cho    S C Tu 《Journal of bacteriology》1991,173(4):1399-1405
Xenorhabdus luminescens HW is the only known luminous bacterium isolated from a human (wound) source. A recombinant plasmid was constructed that contained the X. luminescens HW luxA and luxB genes, encoding the luciferase alpha and beta subunits, respectively, as well as luxC, luxD, and a portion of luxE. The nucleotide sequences of these lux genes, organized in the order luxCDABE, were determined, and overexpression of the cloned luciferase genes was achieved in Escherichia coli host cells. The cloned luciferase was indistinguishable from the wild-type enzyme in its in vitro bioluminescence kinetic properties. Contrary to an earlier report, our findings indicate that neither the specific activity nor the size of the alpha (362 amino acid residues, Mr 41,389) and beta (324 amino acid residues, Mr 37,112) subunits of the X. luminescens HW luciferase was unusual among known luminous bacterial systems. Significant sequence homologies of the alpha and beta subunits of the X. luminescens HW luciferase with those of other luminous bacteria were observed. However, the X. luminescens HW luciferase was unusual in the high stability of the 4a-hydroperoxyflavin intermediate and its sensitivity to aldehyde substrate inhibition.  相似文献   

3.
Bioluminescence of the insect pathogen Xenorhabdus luminescens.   总被引:8,自引:1,他引:7       下载免费PDF全文
Luminescence of batch cultures of Xenorhabdus luminescens was maximal when cultures approached stationary phase; the onset of in vivo luminescence coincided with a burst of synthesis of bacterial luciferase, the enzyme responsible for luminescence. Expression of luciferase was aldehyde limited at all stages of growth, although more so during the preinduction phase. Luciferase was purified from cultures of X. luminescens Hm to a specific activity of 4.6 x 10(13) guanta/s per mg of protein and found to be similar to other bacterial luciferases. The Xenorhabdus luciferase consisted of two subunits with approximate molecular masses of 39 and 42 kilodaltons. A third protein with a molecular mass of 24 kilodaltons copurified with luciferase, and in its presence, either NADH or NADPH was effective in stimulating luminescence, indicating that this protein is an NAD(P)H oxidoreductase. Luciferases from two other luminous bacteria, Vibrio harveyii (B392) and Vibrio cholerae (L85), were partially purified, and their subunits were separated in 5 M urea and tested for complementation with the subunits prepared from X. luminescens Hb. Positive complementation was seen with luciferase subunits among all three species. The slow decay kinetics of the Xenorhabdus luciferase were attributed to the alpha subunit.  相似文献   

4.
The entomopathogenic bacterium Xenorhabdus luminescens produces a red pigment and an antibiotic in insect carcasses in which it grows and in axenic cultures. The pigment was purified and identified as the anthraquinone derivative 1,6-dihydroxy-4-methoxy-9,10-anthraquinone, which exhibits a pH-sensitive color change, i.e., it is yellow below pH 9 and red above pH 9. The antibiotic was also purified and identified as the hydroxystilbene derivative 3,5-dihydroxy-4-isopropylstilbene.  相似文献   

5.
Characterization of form variants of Xenorhabdus luminescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in pigmentation and uptake of dye. Of the two other variants, one produced a yellow pigment and fewer antibiotics (XE-yellow), while the other did not produce a pigment or antibiotics (XE-white). Both were less luminescent, did not take up dye, and had small cell and colony sizes. These two variants were very unstable and shifted to the primary form after 3 to 5 days. It was not possible to separate the primary form and the white variant completely; subcultures of one colony always contained a few colonies of the other variant. The white variant was also found in several other X. luminescens strains. DNA fingerprints showed that all four variants are genetically identical and are therefore derivatives of the same parent. Protein patterns revealed a few differences among the four variants. None of the variants could be considered the secondary form. The pathogenicity of the variants decreased in the following order: XE-red, XE-pink, XE-yellow, and XE-white. The mechanism and function of this variability are discussed.  相似文献   

6.
Characterization of form variants of Xenorhabdus luminescens.   总被引:1,自引:0,他引:1  
From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in pigmentation and uptake of dye. Of the two other variants, one produced a yellow pigment and fewer antibiotics (XE-yellow), while the other did not produce a pigment or antibiotics (XE-white). Both were less luminescent, did not take up dye, and had small cell and colony sizes. These two variants were very unstable and shifted to the primary form after 3 to 5 days. It was not possible to separate the primary form and the white variant completely; subcultures of one colony always contained a few colonies of the other variant. The white variant was also found in several other X. luminescens strains. DNA fingerprints showed that all four variants are genetically identical and are therefore derivatives of the same parent. Protein patterns revealed a few differences among the four variants. None of the variants could be considered the secondary form. The pathogenicity of the variants decreased in the following order: XE-red, XE-pink, XE-yellow, and XE-white. The mechanism and function of this variability are discussed.  相似文献   

7.
The entomopathogenic bacterium Xenorhabdus luminescens produces a red pigment and an antibiotic in insect carcasses in which it grows and in axenic cultures. The pigment was purified and identified as the anthraquinone derivative 1,6-dihydroxy-4-methoxy-9,10-anthraquinone, which exhibits a pH-sensitive color change, i.e., it is yellow below pH 9 and red above pH 9. The antibiotic was also purified and identified as the hydroxystilbene derivative 3,5-dihydroxy-4-isopropylstilbene.  相似文献   

8.
Bioluminescence of the insect pathogen Xenorhabdus luminescens   总被引:2,自引:0,他引:2  
Luminescence of batch cultures of Xenorhabdus luminescens was maximal when cultures approached stationary phase; the onset of in vivo luminescence coincided with a burst of synthesis of bacterial luciferase, the enzyme responsible for luminescence. Expression of luciferase was aldehyde limited at all stages of growth, although more so during the preinduction phase. Luciferase was purified from cultures of X. luminescens Hm to a specific activity of 4.6 x 10(13) guanta/s per mg of protein and found to be similar to other bacterial luciferases. The Xenorhabdus luciferase consisted of two subunits with approximate molecular masses of 39 and 42 kilodaltons. A third protein with a molecular mass of 24 kilodaltons copurified with luciferase, and in its presence, either NADH or NADPH was effective in stimulating luminescence, indicating that this protein is an NAD(P)H oxidoreductase. Luciferases from two other luminous bacteria, Vibrio harveyii (B392) and Vibrio cholerae (L85), were partially purified, and their subunits were separated in 5 M urea and tested for complementation with the subunits prepared from X. luminescens Hb. Positive complementation was seen with luciferase subunits among all three species. The slow decay kinetics of the Xenorhabdus luciferase were attributed to the alpha subunit.  相似文献   

9.
Colonial and Cellular Polymorphism in Xenorhabdus luminescens   总被引:4,自引:1,他引:3       下载免费PDF全文
A highly polymorphic Xenorhabdus luminescens strain was isolated. The primary form of X. luminescens was luminescent and nonswarming and produced a yellow pigment and antimicrobial substances. The primary form generated a secondary form that had a distinct orange pigmentation, was weakly luminescent, and did not produce antimicrobial substances. Both the primary and secondary forms generated a set of colony variants at frequencies that exceeded normal rates for spontaneous mutation. The variant forms include nonswarming and swarming forms that formed large colonies and a small-colony (SC) form. The primary and secondary forms generated their SC forms at frequencies of between 1 and 14% and 1 and 2%, respectively. The SC forms were distinct from their parental primary and secondary forms in colony and cellular morphology and in protein composition. The cellular morphology and protein patterns of the nonswarming and swarming colony variants were all very similar. The DNA fingerprints of all forms were similar. Each SC-form colony reverted at high frequency to the form from which it was derived. The proportion of parental-type cells in the SC-form colonies varied with age, with young colonies containing as few as 0.0002% parental-type cells. The primary-to-secondary switch was stable, but all the other colony forms were able to switch at high frequencies to the alternative colony phenotypes.  相似文献   

10.
Xenorhabdus luminescens Hm cultured in gelatin broth produced a single extracellular protease. The protease was purified by a factor of 500 and characterized as a monomeric protein with an approximate molecular weight of 61,000. On the basis of inhibitor studies and its pH optimum, the protease was classified as an alkaline metalloprotease with a pH optimum near 8; the isoelectric point of the enzyme is 4.2 +/- 0.2. The protease may be a major factor in the ecology of X. luminescens, which is carried as a symbiom of some parasitic nematodes.  相似文献   

11.
The luxCDABE operon of Xenorhabdus luminescens was cloned into pUC18 to make pLITE27. Expression of the lux genes from the lac promoter resulted in strong constitutive light emission by Escherichia coli DH5 carrying the recombinant lux plasmid, pLITE27. When strain DH5(pLITE27) was immobilized with sodium alginate-CaCl2, the embedded cells retained their luminescence up to 2 weeks under appropriate storage conditions.  相似文献   

12.
13.
The lux genes of Xenorhabdus luminescens, a symbiont of the nematode Heterorhabditis bacteriophora, were cloned and expressed in Escherichia coli. The expression of these genes in E. coli was qualitatively similar to their expression in X. luminescens. The organization of the genes is similar to that found in the marine luminous bacteria. Hybridization studies with the DNA that codes for the two subunits of luciferase revealed considerable homology among all of the strains of X. luminescens and with the DNA of other species of luminous bacteria, but none with the nonluminous Xenorhabdus species. Gross DNA alterations such as insertions, deletions, or inversions do not appear to be involved in the generation of dim variants known as secondary forms.  相似文献   

14.
We investigated the enzymatic properties of a serralysin-type metalloenzyme, provisionally named as protease B, which is secreted by Xenorhabdus bacterium, and probably is the ortholog of PrA peptidase of Photorhabdus bacterium. Testing the activity on twenty-two oligopeptide substrates we found that protease B requires at least three amino acids N-terminal to the scissile bond for detectable hydrolysis. On such substrate protease B was clearly specific for positively charged residues (Arg and Lys) at the P1 substrate position and was rather permissive in the others. Interestingly however, it preferred Ser at P1 in the oligopeptide substrate which contained amino acids also C-terminal to the scissile bond, and was cleaved with the highest k(cat)/K(M) value. The pH profile of activity, similarly to other serralysins, has a wide peak with high values between pH 6.5 and 8.0. The activity was slightly increased by Cu(2+) and Co(2+) ions, it was not sensitive for serine protease inhibitors, but it was inhibited by 1,10-phenanthroline, features shared by many Zn-metalloproteases. At the same time, EDTA inhibited the activity only partially even either after long incubation or in excess amount, and Zn(2+) was inhibitory (both are unusual among serralysins). The 1,10-phenanthroline inhibited activity could be restored with the addition of Mn(2+), Cu(2+) and Co(2+) up to 90-200% of its original value, while Zn(2+) was inefficient. We propose that both the Zn inhibition of protease B activity and its resistance to EDTA inhibition might be caused by an Asp in position 191 where most of the serralysins contain Asn.  相似文献   

15.
Abstract Cultures of the primary form of Xenorhabdus luminescens strain Hm gave rise to secondary forms after prolonged static incubation in two broth media. The secondary forms were deficient in pigmentation and extracellular antibiotic, protease and lipase activities, and were about 100-fold less luminous than the primary form in vivo. Secondary forms isolated on two separate occasions from two different media were identical in their deficiencies. Cultures of the secondary form in defined broth media produced no detectable secondary metabolites, unlike the primary form, and grew more rapidly than the primary form. A protocol for screening primary cultures of X. luminescens for secondary forms is presented.  相似文献   

16.
17.
Strains of Xenorhabdus nematophilus and Photorhabdus luminescens were genetically marked with kanamycin resistance and the xylE gene to aid theirdetection in water and soil. Following release in river water, cells declined to undetectable levelsin 6 d. In sterile river water, this decline was enhanced with cells detectable for only 2 d. In sterileMilli-Q purified water, the decline was slower than in either sterile or non-sterile river water.Survival in soil was also restricted with cells only detectable for 7 d. These experiments indicatedthat both X. nematophilus and P. luminescens have limited survival orcompetitive abilities in these environments. The faster decline of populations in sterile river waterwas unexpected, and the possible formation of specialized survival stages was investigated. Insterile water, a non-culturable but viable population of cells was detected, indicating that cellsmay survive longer than anticipated in the environment and remain undetectable using standardmicrobiological methods. The implications of this work to the use of these strains in biologicalcontrol and the release of genetically-modified micro-organisms is discussed.  相似文献   

18.
【目的】研究特殊生境的微生物——嗜线虫致病杆菌(Xenorhabdus bovienii Pac Yellow)的次级代谢产物,为微生物药物或农用抗生素开发提供结构多样的化合物。【方法】通过16S r RNA基因比对鉴定菌株;利用薄层层析、硅胶柱层析、凝胶层析、液相制备等技术进行分离纯化;利用质谱、红外光谱与核磁共振等光谱技术鉴定化合物结构。【结果】Pac Yellow菌株被鉴定属于致病杆菌属bovienii种。从该菌株中分离纯化了4个单体化合物,它们的结构被鉴定为吲哚类衍生物,可能源于色氨酸与缬氨酸或异亮氨酸的缩合产物。【结论】从嗜线虫致病杆菌——Pac Yellow菌株中分离鉴定了4个吲哚生物碱类抗生素,它们具有中等到高的抗菌活性。  相似文献   

19.
20.
The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens   总被引:13,自引:0,他引:13  
Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic synthesizing genes. These proteins are likely to play a role in the elimination of competitors, host colonization, invasion and bioconversion of the insect cadaver, making P. luminescens a promising model for the study of symbiosis and host-pathogen interactions. Comparison with the genomes of related bacteria reveals the acquisition of virulence factors by extensive horizontal transfer and provides clues about the evolution of an insect pathogen. Moreover, newly identified insecticidal proteins may be effective alternatives for the control of insect pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号