首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
We have previously demonstrated that prostate carcinoma cells exposed to fractionated radiation differentially expressed more genes compared to single-dose radiation. To understand the role of miRNA in regulation of radiation-induced gene expression, we analyzed miRNA expression in LNCaP, PC3 and DU145 prostate cancer cells treated with single-dose radiation and fractionated radiation by microarray. Selected miRNAs were studied in RWPE-1 normal prostate epithelial cells by RT-PCR. Fractionated radiation significantly altered more miRNAs as compared to single-dose radiation. Downregulation of oncomiR-17-92 cluster was observed only in the p53 positive LNCaP and RWPE-1 cells treated with single-dose radiation and fractionated radiation. Comparison of miRNA and mRNA data by IPA target filter analysis revealed an inverse correlation between miR-17-92 cluster and several targets including TP53INP1 in p53 signaling pathway. The base level expressions of these miRNAs were significantly different among the cell lines and did not predict the radiation outcome. Tumor suppressor miR-34a and let-7 miRNAs were upregulated by fractionated radiation in radiosensitive LNCaP (p53 positive) and PC3 (p53-null) cells indicating that radiation-induced miRNA expression may not be regulated by p53 alone. Our data support the potential for using fractionated radiation to induce molecular targets and radiation-induced miRNAs may have a significant role in predicting radiosensitivity.  相似文献   

3.
Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.  相似文献   

4.
Liu XR  Tian WH  Dong XY  Wu XZ  Lv JX  Wu XB 《病毒学报》2011,27(6):533-541
研究在HeLaS3细胞中过表达Lin28a/Lin28b对let-7家族miRNA表达水平和活性的影响。首先,构建Lin28a和Lin28b的表达载体pAAV2neo-Lin28a和pAAV2neo-Lin28b,分别转染HeLaS3细胞并筛选获得Lin28a和Lin28b的稳定表达细胞株HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b。然后,以pAAV2neo-Gluc-(Fluc)为基本骨架,构建并获得检测let-7家族miRNA活性的8种质粒型载体,并包装为相应的重组腺相关病毒(Recombinant adeno-associated virus,rAAV),作为检测miRNA靶序列介导的转录后抑制活性的传感器,命名为Asensor。在此基础上,以HeLaS3细胞为对照,用Western blot检测HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b细胞中Lin28a和Lin28b表达水平,用QRT-PCR测定let-7家族各成员表达水平,用Asensor检测let-7家族各成员活性。Western blot结果显示,HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b均能有效地表达Lin28a和Lin28b蛋白;QRT-PCR检测结果显示,相比于HeLaS3细胞,HeLaS3/pAAV2neo-Lin28a细胞中let-7家族各成员表达水平都下降(除let-7e外),但不同成员下降幅度存在差异;Asensor检测结果显示,let-7家族所有成员活性水平都下降,但不同成员下降幅度也存在差异,且同一成员活性水平与表达水平及其下降趋势也不一致。相比于HeLaS3细胞,HeLaS3/pAAV2neo-Lin28b细胞中let-7家族成员的表达和活性水平均明显下降,但表达水平的下降幅度比HeLaS3/pAAV2neo-Lin28a细胞大,而活性的下降幅度却与之相近。本研究建立了一种检测和比较miRNA靶序列介导的转录后抑制活性的方法,首次研究了过表达Lin28a和Lin28b对细胞中的let-7家族miRNA活性影响,并发现Lin28a和Lin28b对let-7家族miRNA表达水平的影响和对其相应活性的影响不一致性,说明在检测miRNA表达水平的同时检测miRNA活性能更全面揭示miRNA的调节功能,为进一步研究let-7家族的调控机制奠定了基础。  相似文献   

5.
This study indicates that embryonic stem cells [ESCs] cultured with retinoic acid and activin A significantly upregulate the miRNA let-7e. This specific miRNA modulates the Wnt pathway and the expression of early nephrogenic markers under these differentiation conditions. The differentiation markers WT1, Pax2 and Wnt4 were downregulated when miRNA let-7e was silenced, thus indicating the role of miRNA let-7e in the differentiation process. PKCβ, GSK3β phosphorylation (GSK3βP) and β-catenin expression was reduced in differentiated cells and reversed by miRNA let-7e silencing. Addition of a PKCβ inhibitor to the miRNA let-7e silenced cells abolished let-7e-derived effects in differentiation markers, and reversed the increase in GSK3βP and β-catenin, thus indicating that miRNA let-7e is involved in differentiation via the modulation of GSK3β phosphorylation and β-catenin production.  相似文献   

6.
RAS is regulated by the let-7 microRNA family   总被引:131,自引:0,他引:131  
MicroRNAs (miRNAs) are regulatory RNAs found in multicellular eukaryotes, including humans, where they are implicated in cancer. The let-7 miRNA times seam cell terminal differentiation in C. elegans. Here we show that the let-7 family negatively regulates let-60/RAS. Loss of let-60/RAS suppresses let-7, and the let-60/RAS 3'UTR contains multiple let-7 complementary sites (LCSs), restricting reporter gene expression in a let-7-dependent manner. mir-84, a let-7 family member, is largely absent in vulval precursor cell P6.p at the time that let-60/RAS specifies the 1 degrees vulval fate in that cell, and mir-84 overexpression suppresses the multivulva phenotype of activating let-60/RAS mutations. The 3'UTRs of the human RAS genes contain multiple LCSs, allowing let-7 to regulate RAS expression. let-7 expression is lower in lung tumors than in normal lung tissue, while RAS protein is significantly higher in lung tumors, providing a possible mechanism for let-7 in cancer.  相似文献   

7.
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways and cell cycle progression following exposure to ionizing radiation is largely unknown. Loss of K-RAS D13 expression in parental HCT116 colorectal carcinoma cells blunted basal ERK1/2, AKT and JNK1/2 activity by ~70%. P38 activity was not detected. Deletion of the allele to express activated K-RAS nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells, but did not restore or alter basal JNK1/2 and p38 activity. In parental cells radiation (1 Gy) caused stronger ERK1/2 pathway activation compared to that of the PI3K/AKT pathway. In H-RAS V12 cells radiation caused stronger PI3K/AKT pathway activation compared to that of the ERK1/2 pathway. Radiation (1 Gy) promoted S phase entry in parental HCT116 cells within 24h, but not in either HCT116 cells lacking K-RAS D13 expression or in H-RAS V12 cells. In parental cells radiation-stimulated S phase entry correlated with ERK1/2-, JNK1/2- and PI3K-dependent increased expression of cyclin D1 and cyclin A, and to a lesser extent cyclin E, 6–24 h after exposure. Cyclin A and cyclin D1 expression were not increased by radiation in cells lacking K-RAS D13 expression or in H-RAS V12 cells. Radiation (1 Gy) modestly enhanced expression of p53, hMDM2 and p21 in parental cells 2-6h after exposure, which was abolished in cells lacking K-RAS D13 expression. Introduction of H-RAS V12 into cells lacking mutant active RAS partially restored radiation-induced expression of p21 and p53, and enhanced the induction of hMDM2 beyond that observed in parental cells. Collectively, our findings argue that the coordinated activation of multiple signaling pathways, in particular ERK1/2 and JNK1/2, by radiation is required to elevate the expression of G1 and S phase cyclin proteins and to promote S phase entry in human colon carcinoma cells expressing wild type p53. In HCT116 cells H-RAS V12 promotes hMDM2 expression after radiation exposure which correlates with reduced p53 expression and increased cell survival.  相似文献   

8.
9.
The death receptor CD95 (APO-1/Fas) mediates apoptosis induction upon ligation by its cognate ligand CD95L. Two types of CD95 signaling pathways have been identified, which are characterized by the absence (Type I) or presence (Type II) of mitochondrial involvement. Micro(mi)RNAs are small noncoding RNAs that negatively regulate gene expression. They are important regulators of differentiation processes and are found frequently deregulated in many human cancers. We recently showed that Type I cells express less of the differentiation marker miRNA let-7 and, hence, likely represent more advanced tumor cells than the let-7 high expressing Type II cells. We have now identified miR-34a as a selective marker for cells that are sensitive to CD95-mediated apoptosis. Both CD95 and miR-34a are p53 target genes, and consequently, both the sensitivity of cancer cells to CD95-mediated apoptosis and the ability to respond to p53 mediated DNA genotoxic stress are linked. Interestingly, while miR-34a was found to positively correlate with the ability of cells to respond to genotoxic stress, let-7 was negatively correlated. The expression level of CD95 inversely correlated with the expression of let-7 suggesting regulation of let-7 expression by CD95. To test a link between p53 and miR-34a, we altered the expression of CD95. This affected the ability of cells to activate p53 and to regulate miR-34a. Our data point to a novel regulatory network comprising p53, CD95, let-7, and miR-34a that affects cancer cell survival, differentiation, and sensitivity to apoptotic signals. The possible relevance of this regulatory network for cancer stem cells is discussed.  相似文献   

10.
11.
Recently, it was reported that knockdown of DICER reduced the ATM-dependent DNA damage response and homologous recombination repair (HRR) via decreasing DICER-generated small RNAs at the damage sites. However, we found that knockdown of DICER dramatically increased cell resistance to camptothecin that induced damage required ATM to facilitate HRR. This phenotype is due to a prolonged G1/S transition via decreasing DICER-dependent biogenesis of miRNA let-7, which increased the p21Waf1/Cip1/p27Kip1 levels and resulted in decreasing the HRR efficiency. These results uncover a novel function of DICER in regulating the cell cycle through miRNA biogenesis, thus affecting cell response to DNA damage.  相似文献   

12.
13.
The induction of apoptosis in cells of human colon cancer cell lines after gamma irradiation was investigated to determine whether apoptosis was mediated by TP53 and the subsequent expression of its downstream target, the NSAID-activated gene (NAG1). HCT116 (TP53(+/+)), HCT15 (TP53 mutant) and TP53 null HCT116 (TP53(-/-)) cells were irradiated with gamma rays, and apoptosis was measured at various times after irradiation. In HCT116 TP53(+/+) cells, apoptosis was increased after irradiation; the increase was dependent on the time after treatment and the dose of gamma rays. However, in HCT15 TP53 mutant cells and HCT116 TP53(-/-) cells, there were no remarkable changes in apoptosis. The expression of TP53 protein in HCT116 cells was increased after irradiation and was followed by an increase in the expression of NAG1 protein. In contrast, the expression of NAG1 protein in TP53 mutant cells and TP53(-/-) cells was not increased by the radiation treatment, suggesting that NAG1 was required for apoptosis. The expression of NAG1 increased apoptosis in HCT116 cells, but radiation treatment did not further increase apoptosis. The transfection of a NAG1 siRNA into HCT116 cells suppressed radiation-induced apoptosis and inhibited the induction of NAG1 protein without altering the expression of TP53. a NAG1 luciferase promoter construct that included both of the TP53 binding sites, was activated by radiation in dose-dependent manner, while the promoters lacking one or both of the TP53 binding sites in the NAG1 promoter activity either was less responsive or did not respond. The findings reported here indicate that gamma radiation activates the TP53 tumor suppressor, which then increases the expression of NAG1. NAG1 mediates the induction of apoptosis in human colorectal cells.  相似文献   

14.
Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA   总被引:3,自引:0,他引:3  
Heo I  Joo C  Cho J  Ha M  Han J  Kim VN 《Molecular cell》2008,32(2):276-284
  相似文献   

15.
The COP9 signalosome (CSN) complex controls protein degradation via the ubiquitin (Ub) proteasome system (UPS) in eukaryotes. In mammalian cells, the multimeric CSN is composed of eight subunits (CSN1 - CSN8). It regulates cullin-RING Ub ligases (CRLs), which target essential regulatory proteins for ubiquitination and subsequent degradation. Thereby, the CSN cooperates with the UPS in a variety of essential cellular functions, including DNA repair, cell cycle and differentiation. Although functions of the CSN have been elucidated, mechanisms and regulatory principles of its de novo formation are completely unknown. Here, we show that there is a fundamental mechanism that allows a coordinated expression of all CSN subunits, a prerequisite for CSN assembly. CSN subunit mRNAs are targets of miRNAs of the let-7 family suppressing CSN subunit expression in human cells. Factors that reduce or block let-7 miRNAs induce the coordinated expression of CSN subunits. For instance, over-expression of CSN1 specifically traps let-7a-1 miRNA and elevates CSN subunit levels by two- to fourfold in a coordinated manner. CSN subunit expression is also increased by specific miRNA inhibitors or by interferon (IFN)-mediated induction of STAT1 and c-Myc reducing levels of let-7 miRNAs. Activation of STAT1 by IFNα or IFNγ induces c-Myc, which increases CSN subunit expression via the Lin28B/let-7 regulatory pathway. By contrast, a let-7a-1 mimic reduces CSN subunit expression. Our data show that let-7 miRNAs control the fine-tuning and coordinated expression of subunits for CSN de novo formation, presumably a general regulatory principle for other Zomes complexes as well.  相似文献   

16.
17.
Y Wang  X Hu  J Greshock  L Shen  X Yang  Z Shao  S Liang  JL Tanyi  AK Sood  L Zhang 《PloS one》2012,7(9):e44399
In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e), breast cancer (let-7a-2), and ovarian cancer (let-7a-3/let-7b). For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.  相似文献   

18.
miRNA let-7e is involved in stem cell differentiation, and metalloproteinases are among its potential target genes. We hypothesized that the inhibitory action of let-7e on regulation of MMP9 expression could represent a crucial mechanism during differentiation of adipose-derived stem cells (ASCs). ASCs were differentiated with all-trans retinoic acid (ATRA) to promote differentiation, and the effect of let-7 silencing during differentiation was tested. Results indicate that ASCs cultured with ATRA differentiated into cells of the epithelial lineage. We found that ASCs cultured with ATRA or transfected with miRNA let-7e expressed epithelial markers such as cytokeratin-18 and early renal organogenesis markers such as Pax2, Wt1, Wnt4 and megalin. Conversely, the specific knockdown of miRNA let-7e in ASCs significantly decreased the expression of these genes, indicating its vital role during the differentiation process. Using luciferase reporter assays, we also showed that MMP9 is a direct target of miRNA let-7e. Thus, our results suggest that miRNA let-7e acts as a matrix metalloproteinase-9 (MMP9) inhibitor and differentiation inducer in ASCs.  相似文献   

19.

Background

The identification of additional prognostic markers to improve risk stratification and to avoid overtreatment is one of the most urgent clinical needs in prostate cancer (PCa). MicroRNAs, being important regulators of gene expression, are promising biomarkers in various cancer entities, though the impact as prognostic predictors in PCa is poorly understood. The aim of this study was to identify specific miRNAs as potential prognostic markers in high-risk PCa and to validate their clinical impact.

Methodology and Principal Findings

We performed miRNA-microarray analysis in a high-risk PCa study group selected by their clinical outcome (clinical progression free survival (CPFS) vs. clinical failure (CF)). We identified seven candidate miRNAs (let-7a/b/c, miR-515-3p/5p, -181b, -146b, and -361) that showed differential expression between both groups. Further qRT-PCR analysis revealed down-regulation of members of the let-7 family in the majority of a large, well-characterized high-risk PCa cohort (n = 98). Expression of let-7a/b/and -c was correlated to clinical outcome parameters of this group. While let-7a showed no association or correlation with clinical relevant data, let-7b and let-7c were associated with CF in PCa patients and functioned partially as independent prognostic marker. Validation of the data using an independent high-risk study cohort revealed that let-7b, but not let-7c, has impact as an independent prognostic marker for BCR and CF. Furthermore, we identified HMGA1, a non-histone protein, as a new target of let-7b and found correlation of let-7b down-regulation with HMGA1 over-expression in primary PCa samples.

Conclusion

Our findings define a distinct miRNA expression profile in PCa cases with early CF and identified let-7b as prognostic biomarker in high-risk PCa. This study highlights the importance of let-7b as tumor suppressor miRNA in high-risk PCa and presents a basis to improve individual therapy for high-risk PCa patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号