首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
以传统固相法制备了(1-x)Li0.04Na0.52K0.44Nb0.86Ta0.10Sb0.04O3-xBaCu0.5O3[简称(1-x)LF4-xBCW]无铅压电陶瓷,研究了不同BCW掺杂量(x=0%,0.1%,O.2%,O.5%,1%,摩尔分数)对LF4陶瓷的显微结构和电性能的影响.结果表明:引入BCW后,材料仍为钙钛矿结构,当x≥1%时,样品由四方相向正交相转变,出现To-t,Tc则随BCW掺入量的增加向低温区移动.BCW掺杂量对LF4的电性能起到"硬性"掺杂作用,其压电常数d33,平面机电耦合系数kp,介电损耗tan δ和介电常数εr均随着BCW含量的增加而降低,而机械品质因素Qm整体提高.此外,BCW的掺入降低了陶瓷的烧结温度并提高了其密度.  相似文献   

2.
李慧  孙彩霞  王博  陈贺  高景霞  张洋洋 《硅酸盐通报》2016,35(10):3431-3436
用传统的固相无压烧结法制备了Li0.02(Na0.52K0.48)0.98Nb0.8T0.2O3-xAg2O(0≤x≤0.1)无铅压电陶瓷,研究了Ag2O掺杂对陶瓷电性能的影响.研究发现,适当掺杂Ag2O能显著提高陶瓷的电性能,在1090℃的烧结温度下,当掺杂量为0.06时,陶瓷的压电性能最佳,d33、Kp、εr、Pr均达到最大(d33=229 pC/N,Kp=55.2%,εr=802,Pr=23 μC/cm2),矫顽场降到最低(Ec=12 kV/cm),应变达到2.0%.但Ag2O的添加使陶瓷的机械品质因数Qm由139.7降到了58.8,使介电损耗tanδ由1.38%增加到了2.7%.  相似文献   

3.
(Li, Ta, Sb) modified sodium potassium niobate/poly(vinylidene fluoride) [(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3–PVDF] 0-3 composites were prepared by a cold press technique, and their piezoelectric and dielectric properties were characterized. All composites exhibited good dispersion of ceramic particles in the polymer matrix. The piezoelectric and dielectric constants were found to be enhanced as the concentration of sodium potassium niobate increases. Even though the process is simple, the composite prepared in this study showed better piezoelectric and dielectric properties than PZT–polymer composites. At room temperature, a (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3–PVDF (7:3) composite revealed a relative dielectric constant, ?r = 166, piezoelectric constant, d33 = 33 pC/N and coercive field, Ec = 5 kV/cm.  相似文献   

4.
用传统的固相反应烧结法制备了Li0.02(Na0.53K0.48)0.98 Nb0.8Ta0.2O3-xSb2O3(LNKNT-xSb2O3)无铅压电陶瓷,研究了Sb3+掺杂对陶瓷晶体结构、显微结构及压电性能的影响.研究结果表明,Sb3+掺杂LNKNT陶瓷属于明显的“软性”掺杂,少量掺杂Sb3+能显著提高陶瓷的烧结及压电性能.当烧结温度为1100℃,掺杂量为2wt%时,LNKNT-0.02Sb陶瓷达到最好的压电性能:d33=193 pC/N,KP=49.5%,εr=779,Pr=16μC/cm2,应变达到2.3%,但机械品质因数QM从110.97降低到了85,介电损耗tanδ从1.66%增加到了2.01%.  相似文献   

5.
采用传统固相烧结法制备Na0.5 K0.44 Li0.06 Nb0.94 Sb0.06 O3无铅压电陶瓷,研究了烧结温度对陶瓷样品微观结构及电学性能的影响.研究结果表明:烧结温度在1020~1100℃范围内,样品均形成了单一的正交相钙钛矿结构,烧结温度对微观形貌和电学性能有较大影响;与纯KNN陶瓷相比,陶瓷的To-t和Tc均向低温方向移动;当烧结温度为1080℃时晶粒发育比较完全,To-t和Tc分别为45℃和345℃,同时表现出优异的电学性能:d33=200 pC/N,kp=0.365,tanδ=4.67%.  相似文献   

6.
采用普通的固相烧结方法制备了LixNa(0.52-x)K0.48NbO3无铅压电陶瓷,研究了陶瓷的显微结构及压电性能。随着Li含量的增加陶瓷烧结温度降低,相结构逐渐由正交相向四方相转变。在x=0.05时,压电常数d33达到117pc/N,平面机电耦合系数kp为36.4%,介电损耗tanδ为0.032。  相似文献   

7.
采用传统电子陶瓷制备工艺制备了(K0.5Na0.5)(TaxNb1-x)O3无铅压电陶瓷。研究了不同Ta含量下(K0.5Na0.5)(TaxNb1-x)O3陶瓷的晶相组成及性能特征。结果表明,(K0.5Na0.5)(TaxNb1-x)O3陶瓷在低Ta含量时形成单一斜方相固溶体,但Ta含量达到0.08mol后则有K6Ta10.8O30次晶相产生。随着Ta的加入,陶瓷的体积密度逐渐增大,居里温度(Tc)逐渐降低。当Ta含量为0.08mol时陶瓷具有良好的铁电、压电性能和介电稳定性能,其压电常数d33为76pC/N。  相似文献   

8.
采用传统固相反应烧结法,以(K0.45+xNa0.55-x)0.98Li0.02(Nb0.77 Ta0.18 Sb0.05)O3-0.005BaZrO3无铅压电陶瓷为研究对象,研究K/Na比例、粉体合成温度、烧结温度、极化工艺条件对压电陶瓷性能的影响,以及退火温度和老化时间对材料性能稳定性的影响.结果表明:该体系陶瓷粉体的合成温度为850℃.烧结温度为1130℃,x=0.04时陶瓷的压电常数d33可达372 pC/N,机电耦合系数kp达0.465.合理的极化条件为极化电压4 kV/mm,极化时间25min,极化温度120℃.压电陶瓷在125℃下具有较好的温度稳定性,但时间稳定性较差,放置300 d后压电常数才能稳定.  相似文献   

9.
采用传统无压固相烧结法制备0.996(0.95K0.5NbO3-0.05LiSbO3)-0.004BiFeO3[0.996(0.95KNN-0.05LS)-0.004BF]无铅压电陶瓷,着重研究烧结保温时间对陶瓷结构、压电性能与介电性能和Curie温度Tc的影响.结果表明:随着烧结保温时间的延长,陶瓷趋于形成更稳定的四...  相似文献   

10.
采用传统固相法制备Li、Ta和Sb共同掺杂铌酸钾钠(KNN)的(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3(KNLNTS)无铅压电陶瓷。研究不同烧结温度对该陶瓷的结构、形貌、致密度以及电学性能的影响。结果表明:不同温度下烧结的陶瓷样品均为钙钛矿相结构;在1 050~1 150℃之间烧结均可获得性能良好的陶瓷样品;1 050℃烧结的样品表现出最佳的综合电学性能,即相对介电常数和压电系数均较大,分别为1 120pC/N和193pC/N,介电损耗较小为2.55%,机械品质因子较大为85,密度较大为4.65g/cm3,且该样品具有饱和的电滞回线。随着烧结温度的升高,陶瓷样品电学性能下降和晶粒增大均与样品中存在着碱金属离子挥发有关。KNLNTS陶瓷样品的Curie温度由不掺杂的KNN陶瓷样品的420℃下降为301℃。  相似文献   

11.
《Ceramics International》2019,45(10):13347-13353
(1-x)(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-xBaTiO3 (labeled as (1-x)KNLNTS- xBT, x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) lead-free ceramics were prepared by a solid-state sintering method. As the BT content increased, the phase of ceramics changed from orthorhombic (0.00 ≤ x ≤ 0.02) to orthorhombic-tetragonal (0.02 < x < 0.06) structure, and finally turned into tetragonal (0.06 ≤ x ≤ 0.10) structure. The Curie-Weiss law and modified Curie-Weiss law were applied to analyzing dielectric properties. With the increase of BT content, the relaxation degree increased, which indicated that the ceramics shown a excellent relaxation behavior. For 0.9KNLNTS- 0.1BT ceramics, the dispersion coefficient γ reached the maximum of 1.73, which is hugely attractive for lead-free relaxor ferroelectrics. From its variation of impedance spectroscopy with temperature, it was found that the relaxation and conduction behavior were associated with the thermal activation, and the oxygen vacancies were the potential ionic carriers. Moreover, through Arrhenius fitting, the activation energy of 0.9KNLNTS- 0.1BT ceramic was 0.82(6) eV, indicating that the oxygen vacancy concentration for the ceramics was high.  相似文献   

12.
The effect of B-site compositional homogeneity on microstructure, piezoelectric properties and dielectric behaviour of lead-free piezoelectric ceramics, (K0.44Na0.52Li0.04) (Nb0.86Ta0.10Sb0.04)O3, is investigated. The B-site compositional homogeneity is evaluated by using an intermediate precursor obtained by solid state reaction between adequate amounts of Nb2O5, Ta2O5 and Sb2O5, calcined at 1350 °C and attrition milled. The B-site precursor powder is mixed with alkaline carbonates to synthesize perovskite powders and, finally, sinter piezoceramics. X-ray diffraction and Raman spectroscopy reveal the formation of a perovskite phase, although tetragonal tungsten-bronze structure is detected as minor secondary phase. Ceramics processed by using B-site precursor show different crystalline structure as a function of sintering conditions or K/Na ratio. The B-site precursor route produces thus lower piezoelectric properties, but the control of alkali volatilization by using sintering powder bed resulted in a relevant decrease of dielectric losses that favours the d33 enhancement.  相似文献   

13.
Compounds based on (KzNa1–z)NbO3 (KNN) are promising lead-free ferroelectric materials that reveal good electrophysical properties. In the present work, we report the results of the study influence of the doping effect of antimony on the technology, microstructure and electrophysical properties of potassium sodium niobate ceramics modified by lithium and tantalum ions (K0.44Na0.52Li0.04)(Nb0.9–xTa0.1Sbx)O3 (KNLNTSbx). The four KNLNTSbx ceramic compositions were designed:
  1. (K0.44Na0.52Li0.04)(Nb0.9Ta0.1)O3 (for xSb?=?0),

  2. (K0.44Na0.52Li0.04)(Nb0.88Ta0.1Sb0.02)O3 (for xSb?=?0.02),

  3. (K0.44Na0.52Li0.04) (Nb0.87Ta0.1Sb0.03)O3 (for xSb?=?0.03),

  4. (K0.44Na0.52Li0.04) (Nb0.86Ta0.1Sb0.04)O3 (for xSb?=?0.04).

All ceramic powders were synthesised by the standard solid-state reaction method from the mixture of oxides and carbonates. The paper presents the technology and results of crystal structure, microstructural, dielectric properties, as well as DC electrical conductivity of the KNLNTSbx ceramics. The conducted research proved that suitable doping of the KNN materials improves the sinterability of the ceramic compositions and positively influences the useful electrophysical properties thereof.  相似文献   

14.
15.
(Na0.52K0.4425Li0.0375)(Nb0.86Ta0.06Sb0.08)O3 powders were synthesized via sol–gel and solid‐state reaction methods as a raw material for the preparation of the ceramics. Dependence of piezoelectric properties and microstructure on sintering temperatures was investigated in this study. Sol–gel‐derived nano‐powders could be densified at a lower temperature of 940°C and exhibited excellent electrical properties after sintering at 1020°C (d33 = 424 pC/N, d33* = 780 pm/V, kp = 52.1%, and Tc = 265°C). The enhanced electric properties were most likely due to the coexistence of orthorhombic and tetragonal phase in the samples at room temperature, homogenous microstructure with fine grain and high density.  相似文献   

16.
The Li/Ta-codoped lead-free (Na,K)NbO3 ceramics with Na:K ratio of 0.535:0.480 were prepared by normal sintering, whose nominal formula was noted as [(Na0.535K0.480)0.942Li0.058](Nb1−xTax)O3 (x=2, 4, 6, 8, 10, 12, 14, and 16 at.%). The X-ray diffraction patterns and the corresponding calculation of lattice parameters showed that a morphotropic phase boundary crossing orthorhombic and tetragonal symmetries occurs at the compositions containing 6∼8 at.% Ta. Because of such transitional behavior achieved by optimizing Ta content, the piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), and dielectric constant (ɛ) were enhanced to peak values, 232 pC/N, 39.4%, and 710, respectively. However, the Curie temperature (TC) and remanent polarization (Pr) show a decreasing tendency with raising Ta content, and their maximum values are 462°C and 8.73 μC/cm2, respectively.  相似文献   

17.
(1 ? x)Bi0.5Na0.5TiO3x(Na0.53K0.44Li0.04)(Nb0.88Sb0.08Ta0.04)O3 (BNT–xNKLNST) with x = 0–0.10 lead-free piezoelectric ceramics were prepared by a solid state method, and the structure and electrical properties were investigated in this study. It is found that a morphotropic phase boundary (MPB) of rhombohedral (R) and tetragonal (T) phase exists in the range of 0.03  x  0.05 and the structure changes to paraelectric phase when x > 0.07. The samples with x = 0.05 exhibit improved electrical properties owing to the formation of MPB, which are as follows: piezoelectric constant d33 = 120 pC/N, remnant polarization Pr = 39.4 μC/cm2 and coercive field Ec = 3.6 kV/mm. These results indicate that the enhanced piezoelectric properties for BNT can be achieved by forming the coexistence of R and T phase.  相似文献   

18.
In order to improve the piezoelectric and aging properties of the lead-free Li0.06(K0.48Na0.52)0.94(Nb0.86Ta0.08Sb0.06)O3 piezoelectric ceramics, the conventional solid-state reaction method and the B-side pre-calcined method were achieved and compared in this paper. The physical and electrical properties of the lead-free Li0.06(K0.48Na0.52)0.94(Nb0.86Ta0.08Sb0.06)O3 piezoelectric ceramics material were investigated and discussed. For the B-side pre-calcined method, the ceramic material exhibited the excellent electrical and piezoelectric parameters. Finally, the electromechanical coupling factors, the resonance frequencies, and the resonance resistances of the lead-free ceramic materials were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号