首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper presents an analytical model to monitor the gradual wear of cutting tools, on-line, during turning operations using ultrasound waves. Ultrasound waves at a frequency of 10 MHz were pulsed continuously inside several cutting tools, towards their cutting edge. The change in tool geometry, due to gradual wear, has been related, in a mathematical form, to the change in the acoustic behavior of ultrasound waves inside the body of the cutting tools. Physical laws governing the propagation and reflection of ultrasound waves along with geometrical analysis of the wear area were used in deriving the mathematical model. The experimental setup and model evaluation is based on a previously published research work by the author, which presented an empirical model showing a corresponding change in the ultrasound behavior with tool gradual wear. The current work emphasizes the previous findings and presents the relation between the acoustic behavior of ultrasound waves and the progressive tool gradual wear in a mathematical form that can be easily used in machine control operations.  相似文献   

2.
A monitoring system for classifying the levels of the tool flank wear of coated tools into some categories has been developed using an unsupervised and self-organizing artificial neural network, ART2. The input pattern used for the ART2 was an array of normalized mean wavelet coefficients of the feed force, which was affected by not only the flank wear but also the severe crater wear observed in high speed machining. The outputs of ART2 were classified into four or five categories of wear levels: the incipient stage, one or two intermediate stages, final stage and hazardous stage. For two apparently different series of input data obtained under the same cutting conditions, which are often experienced in the experiment, the ART2 neural network showed very similar classification of tool wear levels from the beginning to the end of cutting. Further study proved that this monitoring system detected the excessive wear in the hazardous stage for different cutting speeds 5–7 m/s and different feed rates 0.10–0.20 mm/rev.  相似文献   

3.
A comprehensive investigation of the wear progress and chip formation was performed on an ultra-fine-grained cemented carbide ball nose end mill coated with a novel nano-multilayered TiAlCrN/NbN coating, by dry machining-hardened steel AISI H13 (HRC 55–57) at a cutting speed of 300 m/min. Flank wear and cutting forces were measured as the wear progressed; chip temperatures were estimated. The surface morphology of the tools were studied by using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis techniques. Results showed that protective oxide films (Al–O, Cr–O and Nb–O) were formed during cutting. With the combination of the protective oxide films and the fine-grain tough substrate, the tool wear rate was greatly reduced compared to the other coatings tested. Continuous and saw-tooth chips were identified, corresponding to a new sharp tool and a worn tool, respectively. The mechanisms of saw-tooth chip formation were found to be a combination of “crack theory” and “adiabatic shear theory”. The characteristics of the chips were studied in detail with the results showing that during formation the chips underwent a combined effect of strain hardening and thermal softening, followed by a quenching phenomenon.  相似文献   

4.
This research develops a technique that uses the attenuation of ultrasonic waves to characterize the average size and volume fraction of entrained air voids in hardened cement paste. Quantitative knowledge of entrained air void size and distribution helps ensure that an adequate design strength is developed, while maintaining resistance to freeze-thaw damage in cement-based materials. Ultrasonic attenuation coefficients obtained from pulse-burst signals are measured in the frequency range of 500 kHz–5 MHz. From these parameters, the average size and the volume fraction of the entrained air voids are determined using a combination of an ultrasonic scattering model and an inversion algorithm. Experiments are performed on specimens produced with and without entrained air voids. There is a good agreement between the model prediction and the experiments in these systems that contained <10% by volume of entrained air voids.  相似文献   

5.
6.
Cubic Nitride Boron (CBN) tools are generally used for machining harder alloys such as hardened high Cr steels, titanium and nickel alloys. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of different CBN tool grades in finish turning Ti–6Al–4V (IMI 318) alloy at high cutting conditions, up to 250 m min−1, with various coolant supplies. Tool wear, failure modes, cutting and feed forces and surface roughness of machined surfaces were monitored and used to access the performance of the cutting tools. Comparative trials were carried out with uncoated carbide tools when machining at a speed of 150 m min−1. Test results show that the performance of CBN tools, in terms of tool life, at the cutting conditions investigated is poor relative to uncoated carbide tools, as expected and often, reported due probably to rapid notching and excessive chipping of the cutting edge associated with a relatively high diffusion wear rate that tends to weaken the bond strength of the tool substrate. An increase in the CBN content of the cutting tool also led to a reduction in tool life when machining at the cutting conditions investigated.  相似文献   

7.
High-speed milling of titanium alloys using binderless CBN tools   总被引:4,自引:0,他引:4  
The performance of conventional tools is poor when used to machine titanium alloys. In this paper, a new tool material, which is binderless cubic boron nitride (BCBN), is used for high-speed milling of a widely used titanium alloy Ti–6Al–4V. The performance and the wear mechanism of the BCBN tool have been investigated when slot milling the titanium alloy in terms of cutting forces, tool life and wear mechanism. This type of tool manifests longer tool life at high cutting speeds. Observations based on the SEM and EDX suggest that adhesion of workpiece and attrition are the main wear mechanisms of the BCBN tool when used in high-speed milling of Ti–6Al–4V.  相似文献   

8.
High-throughput drilling of titanium alloys   总被引:3,自引:1,他引:3  
Experiments of high-throughput drilling of Ti–6Al–4V at 183 m/min cutting speed and 156 mm3/s material removal rate (MRR) using a 4 mm diameter WC–Co spiral point drill were conducted. The tool material and geometry and drilling process parameters, including cutting speed, feed, and fluid supply, were studied to evaluate the effect on drill life, thrust force, torque, energy, and burr formation. The tool wear mechanism, hole surface roughness, and chip light emission and morphology for high-throughput drilling were investigated. Supplying the cutting fluid via through-the-drill holes has proven to be a critical factor for drill life, which can be increased by 10 times compared to that of dry drilling at 183 m/min cutting speed and 0.051 mm/rev feed. Under the same MRR of 156 mm3/s with a doubled feed of 0.102 mm/rev (91 m/min cutting speed), over 200 holes can be drilled. The balance of cutting speed and feed is essential to achieve long drill life and good hole surface roughness. This study demonstrates that, using proper drilling process parameters, spiral point drill geometry, and fine-grained WC–Co tool material, the high-throughput drilling of Ti alloy is technically feasible.  相似文献   

9.
In cutting operations by multipoint cutting tools such as bandsawing, the layer of material removed per tooth (5–30 μm) is usually less than or equal to the cutting edge radius (5–15 μm). Furthermore, the bandsaw tooth is also restricted since it has to accommodate the chip in a gullet of limited size. This situation can lead to inefficient metal removal by a combination of piling up, discontinuous chip formation and ploughing action in contrast to the cutting operations by most of the single point cutting tools (e.g., turning). Specific Cutting Energy (ESP) is a better way of measuring the efficiency of the metal cutting process compared to the other processes such as determining tool wear, cutting forces, chip ratio, etc. This paper reports on the full bandsawing tests of three different workpiece materials (Ball bearing steel, Stainless steel and Ni–Cr–Mo steel). The increase of ESP throughout the life of the bandsaw reflected the degradation of the cutting performance due to the wear of the cutting edge geometry for Ball bearing and Stainless steels. However, there was no increase in ESP when cutting Ni–Cr–Mo steel, which could be explained by the existence of a large protective built-up edge and/or minimal blade wear. The variation of the ESP in different workpiece materials will also provide valuable information for bandsaw manufacturers and end users to estimate machinability characteristics for selected workpieces.  相似文献   

10.
Hard milling was applied to 100Cr6 steel of 50 HRC hardness using cutting tools with different flank wear. The modified surface layers were investigated by eddy current and incremental permeance measurements at magnetizing frequencies from 0.2 to 10 kHz. The signals were studied as a function of a low-frequency magnetic field applied to the sample. Both methods showed growth of magnetically harder peak in the measured curve with tool flank wear and magnetizing frequency increase. New parameters were introduced to evaluate the flank wear and corresponding surface damage in the material. The incremental permeance method showed much higher sensitivity comparing to the eddy current testing.  相似文献   

11.
针对BP神经网络容易陷入局部极值导致识别精度低的问题,文章提出了一种基于混合粒子群算法(HPSO)的BP神经网络优化算法。在刀具磨损监测实验过程中,采集刀具切削的声发射(AE)信号,利用小波包分解算法对AE信号进行滤波,并进行特征提取。将频带能量特征和切削参数分别作为主特征和辅助特征,并对其对归一化处理。采用混合粒子群优化算法(HPSO)对BP神经网络预测模型进行优化,利用优化后的模型对测试样本进行模式识别,结果表明,优化后的HPSO-BP模型能够有效地降低神经网络陷入局部极值的情况,提高刀具磨损识别精度。  相似文献   

12.
Tool wear is one of the most important aspects in metal cutting, especially when machining hardened steels. The present work shows the results of tool wear, cutting force and surface finish obtained from the turning operation on hardened AISI 4340 using PCBN coated and uncoated edges. Three different coatings were tested using finishing conditions: TiAlN, TiAlN-nanocoating and AlCrN. The lowest tool wear happened with TiAlN-nanocoating followed by TiAlN, AlCrN and uncoated PCBN. Forces followed the same pattern, increasing in the same order, after flank wear appears. At the beginning of cutting, there was no significant difference amongst the coated tools, only the uncoated one showing higher cutting force. Ra values were between 0.7 and 1.2 μm with no large differences amongst the tools. Finite element method (FEM) simulations indicated that temperature at the chip–tool interface was around 800 °C in absence of flank wear, independently of coating. In that range only the TiAlN coating oxidize since AlCrN needs higher than 1000 °C. Therefore, due to a combination of high hardness in the cutting temperature range and the presence of an oxidizing layer, TiAlN-nanocoating performed better in terms of tool wear and surface roughness.  相似文献   

13.
Focused ultrasound was used to study passivity of pure iron in 2 N H2SO4. Ultrasonic waves were used to depassivate a passive surface film and influence the subsequent repassivation process. A curved piezo-electric transducer produced high frequency (1.58 MHz) ultrasonic waves which created cavitation at the focal point. Acoustic focal intensities up to 3.4 kW cm?2 were generated. Low frequency (20 kHz) ultrasound was produced with a commercial sonicator equipped with an exponential microhorn. At high focal intensities (above 1.5 kW cm?2) a single (100 ms) pulse of ultrasound produced depassivation; at low intensities continuous ultrasonic exposure was required. In all cases, the induced depassivation was followed by precipitation of a metal salt film upon the metal surface before the oxide film formation.  相似文献   

14.
In this paper, a face-milling cutter is proposed and manufactured to improve a cutter’s dynamic characteristics. The proposed cutter, comprises double step blades, and is designed to give better stability in terms of vibration and to suppress the possibility of abrupt wear and chipping. Vibration experiments with the conventional type and the proposed cutter were performed, and the results showed that the vibration amplitude in the time domain and the peak value in the vibration spectrum in the frequency domain are considerably lower for the proposed cutter than for the conventional cutter. In addition, the validity of a cutting dynamics model, which can effectively predict the cutting dynamics on the machine–tool–workpiece (M–T–W), was examined by the vibration experiments.  相似文献   

15.
Cutting forces generated using CBN tools have been evaluated when cutting steel being hardened to 45–55 HRC. Radial thrust cutting force was the largest among the three cutting force components and was most sensitive to the changes of cutting edge geometry and tool wear. The surface finish produced by CBN tools was compatible with the results of grinding and was affected by cutting speed, tool wear and plastic behaviour of the workpiece material.  相似文献   

16.
The conventional manufacturing methods of superabrasive grinding wheels generally result in random crystallographic orientations of the abrasive grits with their inherent positioning/spacing inconsistencies on the wheel's working surface. To strategically address these variances, the paper reports on a novel concept of robust generation of preferentially orientated and feature-controlled diamond micro-arrays. Firstly, an Nd:YAG Q-switched pulsed laser was used to accurately produce innovative patterns of micro-crystallite abrasive features in thick-film chemical vapour deposition (CVD) diamond where the size, spacing and orientation of the crystallites can be accurately controlled using carefully selected laser path and operating parameters. Geometrical characterisation of diamond micro-arrays have then been evaluated to enable reproducibility of the laser patterning technique as well as to have a robust basis for comparison of the wear evolution of the crystallites when tested in cutting conditions. Secondly, the performance of both polycrystalline and preferentially orientated ({1 0 0} and {1 1 0} faces) monocrystalline CVD diamond micro-arrays were evaluated in simulated surface grinding trials against a Ti–6Al–4V alloy workpiece where levels/mechanisms of wear of the crystallites as well as the main cutting forces have been analysed. It was found that the diamond micro-arrays of {1 0 0} orientation in the 1 1 0 direction had a higher wear than the diamond arrays of {1 1 0} orientation in the 1 0 0 direction, while both array types resulted in similar levels of cutting forces and workpiece surface roughness. However, the use of monocrystalline CVD diamond micro-arrays yielded considerable lower level cutting forces and wear of the crystallites when compared with the values obtained with micro-arrays made of polycrystalline diamond. Although this novel idea of exploiting these diamond micro-crystallites/arrays as customised cutting tools is at a preliminary testing stage, the paper concludes by giving directions in developing highly engineered (micro) tooling solutions for niche applications.  相似文献   

17.
关山  聂鹏 《机床与液压》2012,40(15):22-26
在线刀具磨损量估算及其未来发展趋势预测对于指导现实生产有着十分重要的意义.提出基于L-M优化算法BP神经网络的刀具磨损量在线预测方法.对声发射信号进行小波包分解,得到32个不同频带内的信号,用于构造初始特征向量矩阵;对初始特征向量矩阵进行奇异值分解,计算奇异谱,将奇异谱做为刀具磨损的特征向量,利用神经网络在线预测刀具磨损量.试验结果表明:预测结果能准确地跟踪实际的刀具磨损曲线,并且L-M优化算法比其他改进算法迭代次数少,收敛速度快,精确度高.  相似文献   

18.
An evenly and smoothly distributed abrasion wear, observed along the entire cutting edge of an uncoated carbide drill bit in drilling CFRPs, is due to the highly abrasive nature of the carbon fibres. A very few researchers have only quoted this wear mode as being responsible for giving rise to the rounding of the cutting edge, or its bluntness. However, this wear feature has seldom been investigated, unlike the conventional flank wear in practice. This paper offers a new approach in unveiling and introducing the cutting edge rounding (CER) – a latent wear characteristic as a measure of sharpness/bluntness – of uncoated cemented carbide tools during drilling CFRP composite laminates. Four different types of drills (conventional and specialised) were tested to assess the applicability and relevance of this new wear feature. Mechanical loads (drilling thrust and torque) were recorded, and the hole entry and exit delamination were quantified. For the utilised tools, the accruing magnitude of CER was also recorded, in parallel with studying their conventional flank wear. Very appreciable correlations between the CER and the drilling loads, and also the quantitative delamination results are observed. Results reveal that this new wear type develops almost similarly for the selected tools and is practically independent of their respective conventional flank wear patterns. Moreover, a distinct, non-zero magnitude of the CER for a very fresh tool state may provide researchers with some lucid information in further studying the results during wear tests, more emphatically. The CER correlations with quantitative delamination results are noticed quite comparable to those of the conventional flank wear via statistical linear regression analyses.  相似文献   

19.
Laser-assisted machining of Inconel 718 with an economic analysis   总被引:2,自引:0,他引:2  
Superalloys have high strengths at elevated temperatures, which make them attractive toward various applications and also make these materials difficult to machine at room temperature due to excessive tool wear and poor surface finish. Laser-assisted machining (LAM) offers the ability to machine superalloys more efficiently and economically by providing the local heating of the workpiece prior to material removal by a single point cutting tool.An existing transient, three-dimensional heat transfer model is modified for modeling LAM of Inconel 718. Suitable coating conditions are determined for increasing the laser absorptivity in metals and an approximate absorptivity value is determined. The thermal model is validated in axial and circumferential directions by temperature measurement using an infrared camera.The machinability of Inconel 718 under varying conditions is evaluated by examining tool wear, forces, surface roughness, and specific cutting energy. With increasing material removal temperature from room temperature to 620 °C, the benefit of LAM is demonstrated by a 25% decrease in specific cutting energy, a 2–3-fold improvement in surface roughness and a 200–300% increase in ceramic tool life over conventional machining. Moreover, an economic analysis shows significant benefits of LAM of Inconel 718 over conventional machining with carbide and ceramic inserts.  相似文献   

20.
Modeling of cutting forces in near dry machining under tool wear effect   总被引:1,自引:0,他引:1  
A predictive model for the cutting forces in near dry machining, in which only a small amount of cutting fluid is used, is developed based on considerations of both the lubricating effect and the cooling effect. For the lubricating effect, with the material properties, lubricating parameters, and cutting conditions, the friction coefficient in near dry machining is calculated based on the boundary lubrication model for use in a modified Oxley's approach to determine the cutting forces. For the cooling effect in near dry machining, a moving heat source method is pursued to quantify the primary-zone shear deformation heating, the secondary-zone friction heating, and flank face air–oil mixture cooling. These two effects are considered collectively to estimate cutting forces under the condition of sharp tools. The predicted variables of flow stress, contact length, and shear angle obtained from the model are used to predict the cutting forces due to the tool flank wear effect based on Waldorf's model. Comparisons are made between predicted and experimental cutting forces for sharp tools and worn tools in the cutting of AISI 1045 with uncoated carbide tools. The results show that the proposed model provides average prediction errors of 14% in the tangential cutting force direction, 21% in the axial directions, and 30% in the radial directions within the experimental test condition range (cutting speeds of 45.75–137.25 m/min, feeds 0.0508–0.1016 mm/rev, and depth of cuts 0.508–1.016 mm). It is also found that the cutting forces in near dry machining are generally lower than those under dry machining condition. Under cutting speeds of 91.5 and 137.25 m/min, the deviations of the predicted forces between near dry machining and dry machining range from 5% to 39% for axial cutting forces, 3% to 36% for radial cutting forces, and 1% to 32% for tangential cutting forces. It suggests that the lubricating mechanism has a stronger effect on cutting forces than the cooling mechanism when cutting AISI 1045 with uncoated carbide tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号