首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 103 毫秒
1.
在Si衬底上生长了GaN基LED外延材料,将其转移到新的硅基板上,制备了垂直结构蓝光LED芯片.本文研究了这种芯片在不同n层刻蚀深度情况下的光电特性.在切割成单个芯片之前,对尺寸为200μ×200μm的芯片分别通高达500mA的大电流在测试台上加速老化.结果表明:刻蚀深度为0.8和1.2μm的芯片相对于刻蚀深度为0.5μm的芯片,其正向电压更低且光强衰减更慢,抗静电性能随老化时间变得更稳定,刻蚀深度为0.8μm的芯片抗静电性能强于刻蚀深度为1.2μm的芯片.  相似文献   

2.
在Si衬底上生长了GaN基LED外延材料,将其转移到新的硅基板上,制备了垂直结构蓝光LED芯片.本文研究了这种芯片在不同n层刻蚀深度情况下的光电特性.在切割成单个芯片之前,对尺寸为200μ×200μm的芯片分别通高达500mA的大电流在测试台上加速老化.结果表明:刻蚀深度为0.8和1.2μm的芯片相对于刻蚀深度为0.5μm的芯片,其正向电压更低且光强衰减更慢,抗静电性能随老化时间变得更稳定,刻蚀深度为0.8μm的芯片抗静电性能强于刻蚀深度为1.2μm的芯片.  相似文献   

3.
外延晶格失配等引入的非辐射复合缺陷是影响GaN基LED性能的重要因素。对不同LED样品老化1 600h前后的I-V特性、理想因子以及量子效率、发光特性进行了测量研究,并结合非辐射复合缺陷的定量测量,分析验证了非辐射复合缺陷对LED老化性能的影响。结果表明,非辐射复合缺陷是造成GaN基LED老化过程中隧穿电流增大、I-V特性偏离理想模型、理想因子增大以及光输出非线性化等现象的根本因素。在此基础上建立了非辐射复合缺陷浓度与LED老化性能之间的关系模型,提出了一种基于非辐射复合缺陷浓度及其恶化系数的GaN基LED老化性能评测方法。  相似文献   

4.
针对GB/T 17626.2-2018静电发生器放电电流的校验,提出了一种简易的校验方法.该方法用实验室一般常用的设备即可进行,避免了实验室必须具有电流靶、电流靶适配器才能开展校验的情况.该方法用定向耦合器替代电流靶,实现了为静电发生器加载和放电电流信号取样的功能.用此方法,可以测量放电电流峰值、30 ns处放电电流幅值、60 ns处放电电流幅值、放电电流脉冲的上升时间和下降时间,实现对静电放电发生器放电电流性能的校验.该方法简单易行,随时可以进行.  相似文献   

5.
SCR的I-V曲线中二次崩溃对ESD性能的影响   总被引:1,自引:0,他引:1  
介绍几种常见的静电放电(ESD)器件,阐述SCR在几种ESD器件中的优点,提出持续改进的SCR器件,比较改进SCR器件的原因和改进之后的效果。对比它和改进前器件的ESD测试数据,集中描述了I-V的二次崩溃曲线出现的原因及其对ESD性能的影响。结果表明,SCR的二次崩溃曲线对器件的ESD性能有着非常好的效果,它可以在面积相当的情况下,大大改进器件的ESD性能。  相似文献   

6.
随着电子技术的不断发展,静电防护技术不断提高,无论是在LED器件设计上,还是在生产工艺上,抗ESD能力都有明显的进步,但是,GaN基LED毕竟是ESD敏感器件,静电防护必须渗透到生产全过程。  相似文献   

7.
为研究机器模式(MM)及人体模式(HBM)静电放电试验对LED特性的影响,参考国际标准对半导体元件的静电放电测试要求,对LED样品分别进行MM及HBM静电放电试验。每次静电测试前后均对样品进行光电参数测试,观察样品光电参数的变化,并以此作为判别LED失效的依据。通过实验,研究对比MM静电放电和HBM静电放电试验对LED特性的影响,并从理论上探讨了相关失效机理。实验表明无论是MM静电放电还是HBM静电放电,均会造成LED反向漏电流增大,正向I-V特性"收缩",光通量一定程度的衰减。但是在静电敏感电压上有差别较大,MM静电失效电压远低于HBM静电失效电压。  相似文献   

8.
GaN蓝光LED电极接触电阻的优化   总被引:1,自引:0,他引:1  
裴风丽  陈炳若  陈长清 《半导体光电》2006,27(6):742-744,755
通过分析LED的工作电压和晶圆上两相邻N电极间电阻来讨论快速退火(RTA)和表面处理对GaN基蓝光LED接触电极的影响.研究了p-GaN表面处理对Ni/Au与p-GaN接触电阻的影响.结果表明,用KOH清洗p-GaN表面比用HCl清洗更能有效地改善Ni/Au与p-GaN的接触电阻.讨论了在氧和氮混合气氛下两种退火温度对P电极接触电阻的影响,当退火温度从570 ℃升到620 ℃时接触电阻升高.研究了氮气氛下不同退火温度和时间对LED电极接触的影响,发现在480 ℃下连续退火对N接触有利,但却使P接触变差,而450 ℃、10 min的氮气氛退火能同时得到较好P接触和N接触.  相似文献   

9.
以GaN基蓝光芯片为基础制备了功率型蓝光和白光LED,在室温25℃、湿度35%、驱动电流350mA、连续老化1080h下,功率型蓝光和白光LED光衰随时间呈指数变化,分别平均衰减1.35%和2.56%;对LED的失效机理分析表明,GaN基外延材料质量、芯片的结构设计、p型电极的欧姆接触稳定性等均对LED可靠性有重要的影响.  相似文献   

10.
采用软件仿真一系列的横向扩散金属氧化物半导体(Laterally diffused metal oxide semiconductor,LDMOS)可控硅(Silicon controlled rectifier,SCR)静电放电(Electrostatic discharge,ESD)保护器件,获取工作状态的I-V曲线。结果表明,随着漂移区间距缩小,单位面积的失效电流增大,器件的ESD保护水平提高,但器件的维持电压减小,器件的鲁棒性降低。仿真提取关键点的少数载流子浓度、电流密度、电压强度等电学特性,根据采样结果和理论分析,内部载流子输运能力增强,但导通电阻无明显变化是该现象的内在原因。采用0.5μm 5V/18V CDMOS(Complementary and double-diffusion MOS,互补型MOS和双扩散型MOS集成)工艺流片并测试器件,测试结果证实了仿真结论。为了提高器件的失效电流且不降低维持电压,利用忆阻器无源变阻的特性,提出了一种新型的LDMOS-SCR ESD保护器件(M-ESD器件),理论分析表明,该器件内部忆阻器与寄生晶体管组成的系统能够有效地协同工作,在不增大芯片面积和不降低维持电压的情况下,使器件的失效电流增加,提高器件保护水平。  相似文献   

11.
电流拥挤效应对GaN基发光二极管可靠性的影响   总被引:1,自引:0,他引:1  
文中报道了绝缘蓝宝石衬底上的GaN基发光二极管(LEDs)中,由于横向电阻的存在造成了靠近n型电极台面边缘局部区域电流拥挤,为此从焦耳热和金属电迁移两方面研究了电流拥挤效应对器件可靠性的影响,加速寿命实验结果表明:电流均匀扩展可以使可靠性得到有效改善。  相似文献   

12.
采用Silvaco软件,利用二维有限元方法,仿真得到LED的电学等特性。比较3种不同尺寸的LED器件内的电流分布,得到电流密度与L的关系曲线,发现减小电流扩展长度L可提高电流的均匀性。模拟了5种不同电极结构的1 mm×1 mm功率LED,发现五插指电极结构的电流分布最均匀。  相似文献   

13.
In this letter, a GaN/sapphire light-emitting diode (LED) structure was designed with improved electrostatic discharge (ESD) performance through the use of a shunt GaN ESD diode connected in inverse-parallel to the GaN LED. Thus, electrostatic charge can be discharged from the GaN LED through the shunt diode. We found that the ESD withstanding capability of GaN/sapphire LEDs incorporating this ESD-protection feature could be increased from several hundreds up to 3500 V in the human body model. Furthermore, flip-chip (FC) technology was also used to produce ESD-protected LEDs to further improve light output power and reliability. At a 20-mA current injection, the output power of the FC LEDs showed an improvement of around 60%. After a 1200-h aging test, the luminous intensities of the FC LEDs featuring an internal ESD-protection diode decreased by 4%. This decay percentage was far less than those of non-FC LEDs  相似文献   

14.
光子晶体提高GaN基LED出光效率的研究进展   总被引:1,自引:0,他引:1  
光子晶体作为有效提高LED出光效率的手段之一,在过去的十多年受到了广泛的关注.简述了光子晶体提高LED出光效率的物理原理.从GaN基LED不同光子晶体的结构、晶格常数和高度等参数的影响出发,通过几种新型光子晶体发光二级管的介绍,总结了近年来利用光子晶体提高LED出光效率所取得的研究进展.  相似文献   

15.
GaN基不同电极形状的LED性能比较   总被引:1,自引:0,他引:1  
对前期工作中使用Crosslight APSYS软件模拟的6种优化电极的GaN基InGaN/GaN多量子阱蓝光LED芯片进行试制并测试分析,将实验结果与软件模拟结果进行比较,并进行可靠性分析。结果表明,优化电极的实验结果和软件模拟结果基本吻合,优化电极的光学、电学等特性的确有明显改善,芯片出光效率也有提升。对称型指形在光通量、光效和电压(电流为20 mA)等方面在这6种电极中最优;旋转形电极的寿命在预测中最高,为37 000 h,对称型指形位居第二;老化对优化电极的影响与未优化电极相差不多,所以综合考虑,对称型指形的性能最优。  相似文献   

16.
为了提升垂直结构LED提取效率,针对器件侧壁出光的研究越发引起研究人员的关注。由于GaN的高折射率,大部分有源区发出的光线将被限制在GaN层内横向传输。对不同刻蚀倾角侧面的光提取效率进行分析模拟,模拟结果显示,LED的提取效率可以通过侧壁倾斜角度的优化得以提升。实验结果表明,特定侧壁倾角器件的提取效率相比较垂直侧壁提高了18.75%,电致发光光谱测试(EL)结果表明,实验结论与理论计算值基本吻合。本结论对垂直结构GaN基LED器件的优化设计与性能提升有重要指导意义。  相似文献   

17.
功率型GaN基LED静电保护方法研究   总被引:1,自引:0,他引:1  
介绍了几种常用的GaN基大功率白光发光二极管(LED)静电保护的方法,分析了GaN基大功率白光LED静电损伤的机理,并在此基础上,提出了改善GaN基大功率白光LED的抗静电损伤的途径与方法.  相似文献   

18.
The following letter presents a study regarding GaN-based light-emitting diodes (LEDs) with p-type AlGaN electron blocking layers (EBLs) of different thicknesses. The study revealed that the LEDs could endure higher electrostatic discharge (ESD) levels as the thickness of the AlGaN EBL increased. The observed improvement in the ESD endurance ability could be attributed to the fact that the thickened p-AlGaN EBL may partly fill the dislocation-related pits that occur on the surface of the InGaN-GaN multiple-quantum well (MQW) and that are due to the strain and the low-temperature-growth process. If these dislocation-related pits are not partly suppressed, they will eventually result in numerous surface pits associated with threading dislocations that intersect the InGaN-GaN (MQW), thereby reducing the ESD endurance ability. The results of the experiment show that the ESD endurance voltages could increase from 1500 to 6000 V when the thickness of the p-AlGaN EBL in the GaN LEDs is increased from 32.5 to 130 nm, while the forward voltages and light output powers remained almost the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号