首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ultra-high molecular polyethylene (UHMWPE) fiber reinforced nano-epoxy and pure epoxy composites in bundle form were prepared and tested for tensile properties. UHMWPE fiber composites are well known for their superior tensile performance, and this work was conducted to assess the effect of adding nanoadditives to the resin and to evaluate possible enhancements or degradations to that attribute. The results showed that tensile tests on various types of UHMWPE fibers/nano-epoxy bundle composites resulted in an increase in modulus of elasticity due to the addition of small amounts of reactive nanofibers (r-GNFs) to epoxy matrix. It was observed that the modulus of elasticity of the composite bundles depended on both volume fractions of the matrix and the weight percent (wt%) of r-GNFs in the matrix. A non-linear relationship was established among them and an optimal modulus was determined by calculation. A three-dimensional surface plot considering these two parameters has been generated which gives an indication of change in modulus of elasticity with respect to volume fraction of matrix and wt% of r-GNFs in the matrix. A Weibull analysis of tensile strengths for the various bundle composites was performed and their Weibull moduli were compared. The results showed that presence of r-GNFs in the composites increased the strength effectively, and 0.3 wt% r-GNFs based composites showed the highest strength. An important ancillary finding is that optimum tensile values are a function not only of the above parameters, but also strongly influenced by the addition of diluents which control the viscosity of the blend.  相似文献   

2.
Ultra-high molecular weight polyethylene (UHMWPE) fibers have good mechanical and physical properties and effective radiation shielding functions, which are significant for aerospace structures. In our previous work, nano-epoxy matrices were developed based on addition of reactive graphitic nanofibers (r-GNFs) in a diluent to form a blend. It is found that improved wettability and enhanced adhesion of the matrices to UHMWPE fibers can be obtained. In this study, a series of nano-epoxy matrices with different concentrations of r-GNFs (up to 0.8 wt%) and different weight ratios of r-GNFs to a reactive diluent (1:4, 1:6, 1:7, and 1:9) were prepared. Composite bundle specimens of UHMWPE fiber/nano-epoxy were fabricated and their tensile behavior was investigated. All load-displacement curves of the UHMWPE/nano-matrix bundle composites under tensile loading showed three regions corresponding to the three deformation and failure stages of the materials: 1) elastic deformation stage, 2) plateau stage, and 3) UHMWPE fiber failure stage. The nano-epoxy with 0.3 wt% of r-GNFs and with 1:6 ratio of r-GNFs to the diluent proved to be the best matrix for UHMWPE fiber composites with enhanced tensile properties. For the resulting composite, the load level and consumed energy in the plateau stage were increased by 8% and 30% over the UHMWPE fiber/pure-epoxy specimens, respectively. This UHMWPE fiber composite with the optimized nano-epoxy matrix also possesses the highest initial stiffness and ultimate tensile strength among all the resulting UHMWPE fiber composites. These results laid a foundation for us to fabricate UHMWPE fiber reinforced composite laminates in the near future.  相似文献   

3.
利用石墨烯微片(GNPs)表面羟基与硅烷偶联剂反应,并通过原子转移自由基聚合(ATRP)方法在GNPs表面接枝了聚甲基丙烯酸甲酯(PMMA)。应用扫描电子显微镜、透射电子显微镜、红外光谱和X射线衍射方法分析了化学接枝前后GNPs的微观结构变化。将接枝PMMA的GNPs加入环氧树脂中,研究其对环氧树脂力学性能与尺寸稳定性的影响。研究结果表明,与原始GNPs相比,表面接枝PMMA的GNPs对环氧树脂力学性能的增强作用更明显。添加质量分数为0.5%的GNPs-PMMA可以使环氧树脂拉伸强度和模量分别提高17.4%和75%,弯曲强度和模量也分别增加了6%和12%,同时可以使环氧树脂在低于玻璃化转变温度的线性热膨胀系数(CTE)降低25%。  相似文献   

4.
For the first time, electrospun carbon nanofibers (ECNFs, with diameters and lengths of ∼200 nm and ∼15 μm, respectively) were explored for the preparation of nano-epoxy resins; and the prepared resins were further investigated for the fabrication of hybrid multi-scale composites with woven fabrics of conventional carbon fibers via the technique of vacuum assisted resin transfer molding (VARTM). For comparison, vapor growth carbon nanofibers (VGCNFs) and graphite carbon nanofibers (GCNFs) were also studied for making nano-epoxy resins and hybrid multi-scale composites. Unlike VGCNFs and GCNFs that are prepared by bottom-up methods, ECNFs are produced through a top-down approach; hence, ECNFs are more cost-effective than VGCNFs and GCNFs. The results indicated that the incorporation of a small mass fraction (e.g., 0.1% and 0.3%) of ECNFs into epoxy resin would result in substantial improvements on impact absorption energy, inter-laminar shear strength, and flexural properties for both nano-epoxy resins and hybrid multi-scale composites. In general, the reinforcement effect of ECNFs was similar to that of VGCNFs, while it was higher than that of GCNFs.  相似文献   

5.
Cosmic radiation shielding properties are important for spacecraft, and hydrogenous materials such as polyethylene have been shown to be effective in shielding against galactic cosmic rays and solar energetic particles. Ultrahigh molecular weight polyethylene (UHMWPE) fibers, which are effective in such shielding, also have advanced mechanical and physical properties, which potentially are very valuable for NASA space missions both as a radiation shield and as vehicle structure. In our previous studies, we fabricated a nano-epoxy matrix with reactive graphitic nanofibers that showed enhanced mechanical (including strength, modulus and toughness) and thermal properties (higher Tg, stable CTE, and higher ageing resistance), as well as wetting and adhesion ability to UHMWPE fibers. In this work, the radiation shielding performance of the UHMWPE fiber reinforced nano-epoxy composite was characterized by radiation tests at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. The results showed that the high radiation shielding performance associated with UHMWPE was not degraded by the addition of graphitic nanofibers in the matrix. Together with the previous studies showing higher mechanical properties, these new studies validate the importance of the UHMWPE fiber/nano-epoxy composite for potential applications in more durable space composites and structures, and offer reduced manufacturing costs and wider design applications through avoidance of specialized and in some cases ineffective UHMWPE fiber surface treatment processes.  相似文献   

6.
In this study, hybrid multi-scale composites were developed from glass microfiber fabrics (GFs) and nano-epoxy resins containing electrospun glass nanofibers (EGNFs). The hypothesis was that, through dispersing a small amount of EGNFs into epoxy resin, mechanical properties (particularly out-of-plane mechanical properties) of the resulting hybrid multi-scale composites would be significantly improved. The composites were fabricated by the technique of vacuum assisted resin transfer molding (VARTM). The interlaminar shear strength, flexural properties, impact absorption energy, and tensile properties of the composites were evaluated, and the results were compared to those acquired from GFs/epoxy composite as well as GFs/epoxy composites containing chopped glass microfibers (GMFs); additionally, the reinforcement and/or toughening mechanisms were investigated. The study revealed that the nano-epoxy resin with 0.25 wt.% of EGNFs resulted in substantial improvements on mechanical properties of the resulting hybrid multi-scale composites.  相似文献   

7.
This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.  相似文献   

8.
In this research, the effect of adding carbon nanofibers (CNFs) on fatigue life of epoxy resin under flexural bending fatigue loading conditions was investigated. The fatigue tests of specimens were performed under displacement‐controlled bending loading at different displacement amplitudes at room temperature. Due to the addition of CNFs, a remarkable improvement in fatigue life of epoxy resin was observed. For instance, 24‐fold improvement in fatigue life for 0.25 wt% CNF/epoxy nanocomposites at a strength ratio of 0.43 observed in comparison with the neat epoxy resin.  相似文献   

9.
《Composites Part A》2007,38(3):699-709
Though ultra high molecular weight polyethylene (UHMWPE) fiber made of carbon and hydrogen has superior mechanical properties and effective cosmic shielding properties, it shows weak composite properties due to poor interfacial adhesion between UHMWPE fibers and polymer matrix. In this study, functionalized graphitic nanofibers (GNFs) were treated further using the sonication method. High-level sonication with a series of conditions was employed for the treatment of functionalized GNFs. submicron particle size analyzer and transmission electron microscope (TEM) were used to study effects on the length and morphology of treated nanofibers by sonication conditions. The sonication conditions were optimized for preparation of a nano-epoxy matrix containing well-dispersed, reactive, functionalized graphitic nanofibers. The adhesion ability of the nano-epoxy to UHMWPE fiber was investigated. Bundle fiber pullout specimens with single and double-ends were designed and prepared for study of the adhesion property of the nano-matrix with UHMWPE fiber. Test results showed that the nano-epoxy matrix could effectively improve interfacial adhesion property with UHMWPE fiber.  相似文献   

10.
In this research, the effects of carbon nanofibers (CNFs) on thermo-elastic properties of carbon fiber (CF)/epoxy composite for the reduction of thermal residual stresses (TRS) using micromechanical relations were studied. In the first step, micromechanical models to calculate the coefficient of thermal expansion (CTE) and Young's modulus of CNF/epoxy and CNF/CF/epoxy nanocomposites were developed and compared with experimental results of the other researchers. The obtained results of the CTE and Young's modulus of modified Schapery and Halpin-Tsai theories have good agreement with the experimental results. In the second step, the classical lamination theory (CLT) was employed to determine the TRS for CNF/CF/epoxy laminated nanocomposites. Also, the theoretical results of the CLT were compared with experimental results. Finally, reduction of the TRS using the CLT for different lay-ups such as cross ply, angle ply, and quasi-isotropic laminates were obtained. The results demonstrated that the addition of 1% weight fraction of CNF can reduce the TRS that the most reduction occurred in the unsymmetric cross-ply laminate by up to 27%.  相似文献   

11.
In this work, high concentration exfoliation (~0.2 mg/ml) of graphene in ethyl alcohol is achieved in presence of block copolymer of polyethylene oxide–polypropylene oxide–polyethylene oxide (PEO–PPO–PEO) using sonication followed by centrifugation. The obtained graphene solution is used to prepare epoxy nanocomposites. Flexural tests were conducted over epoxy nanocomposites. The 0.018 wt% of PEO–PPO–PEO block copolymer exfoliated graphene in epoxy matrix shows 21.7% and 15.8% enhancement in flexural modulus and flexural strength respectively as compared to pure epoxy. Transmission electron microscopy reveals well dispersion of graphene in epoxy matrix; and fractography of flexural fractured sample shows graphene dispersion restricts the crack propagation. The well-dispersed graphene in epoxy matrix increase the dielectric constant and thermal stability of epoxy nanocomposites. Further, the enhanced graphene dispersion in epoxy nanocomposites reduces the glass transition temperature (Tg). Thus, enhanced mechanical properties achieved by dispersion of block copolymer exfoliated graphene in epoxy nanocomposites make it suitable for several applications.  相似文献   

12.
The present research aims to fabricate and characterize different nano filler types and filler loadings in epoxy composites for underfill application. The nano filler types were synthetic diamond (SD), boron nitride (BN), and silica (S). The filler loadings which were considered in the study were varied from 1 to 4 vol%. Sonication process was used to facilitate filler dispersion. The results showed that BN had a good flow ability, with higher flow rates than the other filler types. The thermal conductivity of the composites increased with the addition of fillers, and higher thermal conductivity value is observed in SD system. The coefficient of thermal expansion (CTE) of composites decreased with the addition of filler with lower CTE value shown by BN system. Generally, SD showed higher flexural strength and flexural modulus compared with BN and S. A high filler loading also resulted in decreased flexural strength but increased flexural modulus.  相似文献   

13.
A calcium sulfate whisker(CSW) coated with glutaraldehyde crosslinked chitosan(GACS) was prepared to reinforce polyvinyl chloride(PVC) in this study. The results show that the optimum concentration of both chitosan(CS) and glutaraldehyde(GA) is 0.05 wt%. The tensile strength, impact strength, flexural modulus and vicat softening temperature of the PVC composite with 12 wt% of modified CSW are increased by 17.5%, 40.4%, 0.8% and 3.8% compared with those of the PVC composite with 12 wt% of unmodified CSW, and by 2.9%, 42.4%, 27.1% and 6.8% compared with those of pure PVC, respectively. The dynamic mechanical analysis results indicate that the modified CSW/PVC composite exhibits much higher storage modulus and glass transition temperature than those of unmodified CSW/PVC composite and pure PVC.In addition, the modified CSW/PVC composite also demonstrates good thermal properties with a high rapidest decomposition temperature(Trpd) and char residue. The scanning electron microscopy images of tensile-fractured surfaces show that the modified CSW has a strong interfacial adhesion with PVC matrix.  相似文献   

14.
Functionalized multi-wall carbon nanotubes (MWNTs) with carboxylic acid group (–COOH) have been utilized for the preparation of epoxy nanocomposites. Composites were synthesized using three different wt% (0.5, 0.75 and 1) of MWNTs via the solution mixing technique followed by ultrasonication. Mechanical and thermo-mechanical properties of the fabricated composites have been experimented for the suitability of this material in a variety of structural applications. The flexural modulus, strength, hardness, impact strength and storage modulus increased upon increasing MWNTs contents. Best results have been observed in nanocomposites with 0.75 wt% nanotubes loading, which showed 101, 166 and 61% enhancement in the flexural modulus, hardness and storage modulus, respectively, compared to neat epoxy. Achievement of uniform dispersion and hence formation of improved interface between nanotubes and epoxy was the reason behind the maximum enhancement at this wt%, which is further evidenced by the fracture surface morphology obtained from microscopical investigations.  相似文献   

15.
The enthalpy relaxation of an epoxy resin modified by three different concentrations of reactive-Graphitic Nanofibers (r-GNFs) has been investigated by standard and modulated differential scanning calorimetry (DSC). From DSC scan at 10 °C/min following cooling at various rates through the transition region, the apparent activation energy, Δh*, was evaluated. The non-linearity parameter, χ, was analyzed by the peak shift method for samples annealed at temperature T g −20 °C for different period of time (up to 167 h). The non-exponentiality parameter, β, was determined based on the inflectional slope of the complex heat capacity. The experimental results showed that the incorporation of r-GNFs into epoxy network causes greater non-linearity, higher apparent activation energy, and broader relaxation time distribution than the neat epoxy resin. These values were optimum for epoxy resin with 0.3 wt% of r-GNFs.  相似文献   

16.
In this research two grades of polysulfide resin with low and high molecular weight (respectively G4 and G112) as reactive modifier was used to toughen epoxy resin. The effect of modifier molecular weight on impact resistance, thermal expansion coefficient, storage and loss modulus, decomposition temperature and adhesion properties of toughened epoxy was investigated. The impact strength and the thermal expansion coefficient (CTE) of epoxy resin was increased with increasing polysulfide but the G112 modified epoxy samples showed higher CTE values and impact resistance than those of modified with G4. Comparing of the same weight percent inclusion of G4 and G112 effect on decomposition temperature show that G4 modified epoxy resin has lower decomposition temperature than the G112 modified epoxy resin. Also addition of G112 up to 10 weight percent leads to higher bond strength with aluminum sheets. According to the DMTA graphs, glass transition temperature (Tg) of the modified epoxy was decreased with increasing polysulfide weight percent in composition. At the same time G4 modified epoxies have lower Tg and storage modulus than that of modified with G112.  相似文献   

17.
In this study, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and flexural tests were performed on unfilled, 1, 2, 3, and 4 wt% clay filled SC-15 epoxy to identify the effect of clay weight fraction on thermal and mechanical properties of the epoxy matrix. The flexural results indicate that 2.0 wt% clay filled epoxy showed the highest improvement in flexural strength. DMA studies also revealed that 2.0 wt% system exhibit the highest storage modulus and T g as compared to neat and other weight fraction. However, TGA results show that thermal stability of composite is insensitive to the clay content. Based on these results, the nanophased epoxy with 2 wt% clay was then utilized in a vacuum assisted resin transfer molding set up with carbon fabric to fabricate laminated composites. The effectiveness of clay addition on thermal and mechanical properties of composites has been evaluated by TGA, DMA, tensile, flexural, and fatigue test. 5 °C increase in glass transition temperature was found in nanocomposite, and the tensile and flexural strengths improved by 5.7 and 13.5 %, respectively as compared to the neat composite. The fatigue strength was also improved significantly. Based on the experimental result, a linear damage model combined with the Weibull distribution function has been established to describe static failure processing of neat and nanophased carbon/epoxy. The simulated stress–strain curves from the model are in good agreement with the test data. Simulated results show that damage processing of neat and nanophased carbon/epoxy described by bimodal Weibull distribution function.  相似文献   

18.
采用混酸氧化及表面接枝改性的方法制备了表面含不同官能团的多壁碳纳米管(MWCNTs), 并研究了不同MWCNTs对环氧树脂的低温(77 K)抗冲击性能及热膨胀系数(CTE)的影响。结果表明: 通过接枝反应将—NCO基团封端的PEO齐聚物引入MWCNTs表面, 可提高MWCNTs在环氧树脂基体中的分散性, 加强MWCNTs与环氧树脂的界面作用; 相对于纯环氧树脂, 添加质量分数为0.5%的纯MWCNTs、 氧化MWCNTs和表面接枝MWCNTs改性后的环氧树脂的低温冲击强度分别升高了10.27%、 26.13%和32.95%, 而CTE则分别降低了14.79%、 29.59%和40.29%。这表明表面接枝改性MWCNTs可明显提高环氧树脂基体的低温抗冲击性能并降低环氧树脂在玻璃化转变温度下的CTE。  相似文献   

19.
通过紫外-凝露加速老化试验,考察了纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料各种性能的影响。研究了紫外-凝露环境中不同纳米TiO2含量的纳米TiO2改性环氧涂层的颜色及硬度变化。并研究了未涂覆涂层、涂覆环氧涂层及2wt%TiO2改性环氧涂层的玻璃纤维/不饱和聚酯复合材料的颜色变化、质量变化、弯曲性能及剪切性能变化规律。发现紫外-凝露环境下老化90天后未涂覆涂层、涂覆环氧涂层及2wt% TiO2改性环氧涂层玻璃纤维/不饱和聚酯复合材料弯曲强度分别下降了14.7%、10.0%和9.2%,弯曲模量分别下降了5.9%、5.4%和3.2%。考虑紫外、湿度、温度共同作用,对古尼耶夫剩余强度公式进行修正,预测了纳米 TiO2改性环氧涂层玻璃纤维/不饱和聚酯复合材料的寿命。   相似文献   

20.
The mechanical and thermo-mechanical properties of polybenzoxazine nanocomposites containing multi-walled carbon nanotubes (MWCNTs) functionalized with surfactant are studied. The results are specifically compared with the corresponding properties of epoxy-based nanocomposites. The CNTs bring about significant improvements in flexural strength, flexural modulus, storage modulus and glass transition temperature, Tg, of CNT/polybenzoxazine nanocomposites at the expense of impact fracture toughness. The surfactant treatment has a beneficial effect on the improvement of these properties, except the impact toughness, through enhanced CNT dispersion and interfacial interaction. The former four properties are in general higher for the CNT/polybenzoxazine nanocomposites than the epoxy counterparts, and vice versa for the impact toughness. The addition of CNTs has an ameliorating effect of lowering the coefficient of thermal expansion (CTE) of polybenzoxazine nanocomposites in both the regions below and above Tg, whereas the reverse is true for the epoxy nanocomposites. This observation has a particular implication of exploiting the CNT/polybenzoxazine nanocomposites in applications requiring low shrinkage and accurate dimensional control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号