首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 μM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 ± 0.3 M and 1 μM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 μM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-, βI, βII, δ, ε, and ζ isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 μM PMA for either 1 or 24 h did not significantly change the KD and Bmax of the BK receptor for binding (control: KD = 1.7 ± 0.2 nM; Bmax = 47.3 ± 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these resuts demonstrate that translocation of PKC-, βI, βII, δ, ε, and ζ induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

2.
We compared the effects of the leukotriene (LT) D4 receptor antagonist FPL55712 and some lipoxygenase inhibitors on contractions of isolated guinea-pig trachea induced by antigen (ovalbumin, OA) and calcium ionophore A23187 in the presence of the cyclooxygenase inhibitor indomethacin (5 μM), and by arachidonic acid (AA), melittin and LTD4. FPL55712 (0.1 and 1 μM) inhibited contractions induced by AA (100 μM) and the phospholipase A2 activator melittin (3 μg/ml), while the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 10 μM) was a more effective inhibitor of the melittin response than the response. FPL55712 inhibited contractions induced by OA (100 μg/ml) more than by A23187 (1 μg/ml), and these inhibitory effects of FPL55712 were much less in the presence of l-serine-borate complex (45 mM), an inhibitor of LTC4 conversion to LTD4. NDGA (10 μM) had no significant effect on the OA response, whereas the lipoxygenase inhibitors 1-phenyl-3-pyrazolidone (phenidone, 10 μM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 μM) clearly inhibited it. In contrast, NDGA and phenidone inhibited the A23187 response, but ETYA had no effect on it. FPL55712, phenidone and ETYA, but not NDGA, had a large inhibitory effect on LTD4-induced contractions, but these inhibitors had no effect on histamine-induced contractions. These results suggest that in the guinea-pig trachea inhibitors of LTD4-induced contractions decrease antigen-induced contractions, whereas lipoxygenase inhibitors reduce the contraction to A23187.  相似文献   

3.
Many extracellular factors sensitize nociceptors. Often they act simultaneously and/or sequentially on nociceptive neurons. We investigated if stimulation of the protein kinase C epsilon (PKCε) signaling pathway influences the signaling of a subsequent sensitizing stimulus. Central in activation of PKCs is their transient translocation to cellular membranes. We found in cultured nociceptive neurons that only a first stimulation of the PKCε signaling pathway resulted in PKCε translocation. We identified a novel inhibitory cascade to branch off upstream of PKCε, but downstream of Epac via IP3‐induced calcium release. This signaling branch actively inhibited subsequent translocation and even attenuated ongoing translocation. A second ‘sensitizing’ stimulus was rerouted from the sensitizing to the inhibitory branch of the signaling cascade. Central for the rerouting was cytoplasmic calcium increase and CaMKII activation. Accordingly, in behavioral experiments, activation of calcium stores switched sensitizing substances into desensitizing substances in a CaMKII‐dependent manner. This mechanism was also observed by in vivo C‐fiber electrophysiology corroborating the peripheral location of the switch. Thus, we conclude that the net effect of signaling in nociceptors is defined by the context of the individual cell's signaling history.  相似文献   

4.
The involvement of protein kinase C (PKC) and protein kinase A (PKA) in cholinergic signalling in CHO cells expressing the M3 subtype of the muscarinic acetylcholine receptor was examined. Muscarinic signalling was assessed by measuring carbachol-induced activation of phospholipase C (PLC), arachidonic acid release, and calcium mobilisation. Carbachol activation of PLC was not altered by inhibition of PKC with chelerythrine chloride, bisindolylmaleimide or chronic treatment with phorbol myristate acetate (PMA). Activation of PKC by acute treatment with PMA was similarly without effect. In contrast, inhibition of PKC blocked carbachol stimulation of arachidonic acid release. Likewise, PKC inhibition resulted in a decreased ability of carbachol to mobilise calcium, whereas PKC activation potentiated calcium mobilisation. Inhibition of PKA with H89 or Rp-cAMP did not alter the ability of carbachol to activate PLC. Similarly, PKA activation with Sp-cAMP or forskolin had no effect on PLC stimulation by carbachol. Carbachol-mediated release of arachidonic acid was decreased by H89 but only slightly increased by forskolin. Forskolin also increased calcium mobilisation by carbachol. These results suggest a function for PKC and PKA in M3 stimulation of arachidonic acid release and calcium mobilisation but not in PLC activation.  相似文献   

5.
The physiological role of IP(3)-dependent Ca(2+) release in T cell activation was in question due to the contradictory findings that [8-(Diethylamino)octyl-3,4,5-trimethoxybenzoate, HCl] (TMB-8), an inhibitor of intracellular Ca(2+) mobilization, blocked T cell proliferation, curtailing specifically the level of released Ca(2+) did not affect T cell activation and T cell line lacking IP(3) receptor was defective in IL-2 production in response to TCR/CD3 ligand. In the present study we found that TMB-8 inhibited Concanavalin A (Con A)- but not PMA/Ionomycin-induced T cell proliferation in a reversible and dose-dependent manner. The kinetic study revealed that TMB-8 exerted the inhibitory effect at a very early step of T cell activation. The Ca(2+) ionophore ionomycin augmented instead of overcoming the inhibitory effect of TMB-8, although the same doses of ionomycin alone had no effect on Con A-induced T cell proliferation. PMA the metabolically stable, but not diacylglycerol (DAG) the metabolically labile, activator of protein Kinase C (PKC) completely overcome the antiproliferative effect of TMB-8. A specific DAG lipase inhibitor RHC80267 also overcome the effect of TMB-8. Taken together, these results showed that the process of Ca(2+) release through IP(3) receptor, not the released Ca(2+), is essential for the sustained phase of PKC activation during T cell proliferation.  相似文献   

6.
PMA can induce the proliferation of several CTL clones but not of several Th clones derived and tested in our laboratory. The PMA-stimulated proliferation of our CTL clones (which do not make IL-2 mRNA or protein) occurs independently of IL-2 and is not accompanied by lymphokine release. We now report, however, that protein kinase C (PKC) translocation is induced by PMA in CTL clones as well as in Th clones, which lack a proliferative response to PMA. These results suggest that PKC translocation itself is not a sufficient regulatory mechanism to account for cloned T cell proliferation. Moreover, IL-2 did not induce PKC translocation in a CTL clone, which proliferates when stimulated with IL-2. Thus, PKC translocation may not be necessary for activation of CTL proliferation. Nonetheless, cellular PKC activity appears to be required for the proliferative response of T cell clones after stimulation by PMA/PMA + calcium ionophore (A23187) or by triggering through the TCR: chronic PMA treatment, which depletes intracellular PKC activity, abrogates the proliferative response of T cell clones stimulated by PMA/PMA + A23187 or triggered through the TCR. T cell clones depleted of PKC activity, however, retain the ability to proliferate when challenged with IL-2. Murine T cell clones, therefore, possess PKC-dependent and PKC-independent pathways of proliferation that are not regulated by PKC translocation alone.  相似文献   

7.
In the isolated vascularly perfused rat duodenojejunum, vascular infusion of bombesin (100 nM) provoked an early, transient (6 min) release of CCK (500% of basal), followed by a sustained response (400% of basal). The calcium chelator EGTA (2 mM) reduced the early peak and abolished the second phase of CCK release. A similar variation was evoked by verapamil (10 μM), whereas diltiazem (100 μM), nifedipine (50 μM), and ω-conotoxin (100 nM) had no significant effect. It is concluded that bombesin-induced CCK release from rat intestine is dependent on the availability of extracellular calcium and on the activation of calcium channels sensitive to blockers of the phenylalkylamine family.  相似文献   

8.
结合形态学与ITS序列分析对7株野生虫草真菌进行分类鉴定。MTT法分析它们的菌丝体醇提取物对肝癌HepG2细胞增殖的抑制活性。鉴定结果表明菌株MF7、MF9、MF14为细脚棒束孢Isaria tenuipes,菌株MF11、MF12、MF13为蝉棒束孢Isaria cicadae,菌株MF10为球孢白僵菌Beauveria bassiana;MTT结果显示分离到的3株细脚棒束孢和3株蝉棒束孢的菌丝体醇提取物对HepG2的抑制活性较差,IC50均大于500μg/mL;球孢白僵菌MF10对HepG2细胞有一定抑制作用,IC50值为221.6μg/mL,略强于蝙蝠蛾拟青霉发酵菌丝粉产品金水宝胶囊(IC50=364μg/mL)和中华被毛孢发酵菌丝粉产品百令胶囊(IC50=268.7μg/mL)。另外,发现供对比试验的3株蛹虫草菌株(MF1、MF5、MF15)对HepG2细胞均有较好的抑制作用,其中MF15的发酵菌丝体醇提取物活性最强,IC50为55.56μg/mL,暗示蛹虫草发酵菌丝体具有重要的研究价值。  相似文献   

9.
电剌大鼠的血清中淋巴细胞转化抑制因子的作用机制分析   总被引:3,自引:0,他引:3  
徐红  范少光 《生理学报》1990,42(6):555-561
Previous reports showed that EA stimulation (3V, 2Hz, 30 min/d, 5 d) induced the production of one or more lymphocyte proliferation-inhibitory factor(s) in the rat serum. In this paper, the mechanisms of the action for the inhibitory factor(s) to suppress lymphocyte proliferation were studied. (1) the lymphocytes from different immune organs of the mice were prepared and cultured with the rat serum stimulated by EA. The results show that the serum not only inhibited the mouse lymph node T cell proliferation induced by Con A, but also inhibited the mouse thymocyte and spleen T cell proliferation induced by Con A. When B cells were stimulated by LPS, the proliferative effect can also be inhibited significantly by the rat serum stimulated by EA. This implies that the effect of the lymphocyte proliferation-inhibitory factor(s) has no specificity. (2) Incubation of the mouse lymph node cell with serum for one hour is enough to cause an inhibitory effect on Con A stimulated lymphocyte proliferation. However, no inhibitory effect was observed if the mouse lymph node cells were incubated with Con A for 15 min or 30 min before the addition of rat serum. The results demonstrate that the lymphocyte proliferation-inhibitory factor(s) act on the early events of T lymphocyte activation induced by Con A. (3) Protein kinase C (PKC) is a key link in the activation of T and B lymphocyte proliferation by Con A and LPS respectively. So it would be interesting to learn whether the inhibitory effect of the lymphocyte proliferation-inhibitory factor(s) is caused by the inhibition of PKC activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
There is evidence that extracellular nucleotides, acting through multiple P2 receptors, may play an important role in the regulation of bone metabolism by activating intracellular signaling cascades. We have studied the modulation of mitogen-activated protein kinase (MAPK) signaling pathways and its relationship to changes in intracellular calcium concentration ([Ca2+]i) induced by ATP in ROS-A 17/2.8 osteoblastic cells. ATP and UTP (10 μM) increased [Ca2+]i by cation release from intracellular stores. We have found that when the cells are subsequently subjected to mechanical stress (medium perturbation), a transient calcium influx occurs. This mechanical stress-activated calcium influx (MSACI) was not observed after ADP stimulation, indicating that P2Y2 receptor activation is required for MSACI. In addition, ERK 1/2 and p38 MAPK were activated by ATP in a dose- and time-dependent manner. This activation was almost completely blocked using neomycin (2.5 mM), an inhibitor of phosphoinositide-phospholipase C (PI-PLC), Ro 318220 (1 μM), a protein kinase C (PKC) inhibitor, and PP1 (50 μM), a potent and selective inhibitor of the Src-family tyrosine kinases. Ca2+-free extracellular medium (containing 0.5 mM EGTA) and the use of gadolinium (5 μM), which suppressed MSACI, prevented ERK 1/2 and p38 phosphorylation by ATP. Altogether, these results represent the first evidence to date suggesting that P2Y2 receptor stimulation by ATP in osteoblasts sensitizes mechanical stress activated calcium channels leading to calcium influx and a fast activation of the ERK 1/2 and p38 MAPK pathways. This effect also involves upstream mediators such as PI-PLC, PKC and Src family kinases.  相似文献   

11.
研究了不同剂量(100、200和400μg/mL)的牛樟芝粗多糖(CP)和醇提物后的水提物(WEE)对酒精诱导的HepG2细胞氧化损伤的保护作用。研究结果表明:与模型组比较,各剂量组的CP和200、400μg/mL的WEE均能极显著提高HepG2细胞的细胞活力。100μg/mL的CP和WEE均能极显著降低细胞培养液的ALT水平;200和400μg/mL的CP和WEE均能显著降低细胞培养液的ALT、AST水平,同时提高胞内的CAT活力;200和400μg/mL的WEE及400μg/mL CP能明显提高胞内的SOD活力。此外,WEE各剂量组和400μg/mL CP中的胞内ROS水平显著下降。CP中含有甘露糖、鼠李糖、葡萄糖、半乳糖、岩藻糖5种单糖,摩尔比为1:0.1622:6.651:2.646:0.3929。WEE和CP能提高细胞的抗氧化应激能力,降低胞内ROS,对酒精诱导的HepG2细胞氧化损伤起到明显的保护作用,提示多糖是牛樟芝解酒保肝的重要活性成分之一。  相似文献   

12.
The concanavalin A (Con A)-induced proliferation of lymph node lymphocytes is dependent on the presence of macrophages. When lymphocytes are depleted of macrophages, Con A is no longer mitogenic. Either 12-0-tetradecanoylphorbol-13-acetate (TPA), interleukin 1 (IL1), or macrophages in combination with Con A can restore proliferation. To establish where the proliferation process is blocked in the absence of macrophages, an early step in the signalling pathway, the activation of protein kinase C, was examined. It was found that although Con A caused translocation of protein kinase C from the cytosol to the membrane of lymph node cells, when the lymph node cells were depleted of macrophages and exposed to Con A, this translocation of protein kinase C did not occur. Instead, protein kinase C activity decreased in the membrane fraction and increased in the cytosol. On the other hand, TPA caused translocation of protein kinase C (PKC) from the cytosol to the membrane regardless of the presence of macrophages. However, the macrophage product, IL1, alone or in combination with Con A did not cause translocation of protein kinase C. In a reconstitution experiment, in which lymph node cells were depleted of macrophages and then macrophages were added back, the addition of Con A again lead to translocation of protein kinase C from the cytosol to the membrane. This combination also restored cell proliferation. Therefore, the Con A induced PKC translocation in T lymphocytes is macrophage mediated. TPA overcomes the macrophage requirement by directly activating PKC, while IL1 appears to act at a different step in proliferation.  相似文献   

13.
The MMQ pituitary cell line, which expresses a membranal dopamine receptor, was used to examine the individual contributions of dopamine and protein kinase C (PKC) to control of the intracellular calcium concentration. The calcium concentrations, monitored with the fluorescent dye Indo-1, increased in response to elevated K+, BAY K8644, and maitotoxin, implicating the presence of voltage-dependent calcium channels. Dopamine had no detectable independent effect, but significantly inhibited the rise in intracellular calcium mediated by activation of voltage-dependent calcium channels; this dopaminergic action was prevented by haloperidol. Acute pharmacological activation of PKC for 60 s inhibited the stimulatory effects of these calcium channel activators, and this acute inhibitory action was abolished by prior depletion of PKC. In contrast, however, PKC depletion did not alter the calcium response to BAY K8644 or maitotoxin. Thus, MMQ cells appear to have voltage-dependent calcium channels which, at rest, are either at low density or in a closed state. The rise in intracellular calcium resulting from stimulation of the channels is under inhibitory control by an apparent D-2 dopamine receptor. When pharmacologically activated, phorbol diester-sensitive PKC limits the rise in the cellular calcium level associated with calcium uptake. In the absence of pharmacological activation, however, this enzyme system does not appear to play a role in the cellular calcium response to BAY K8644 or maitotoxin.  相似文献   

14.
电针大鼠的血清中淋巴细胞转化抑制因子的作用机制分析   总被引:2,自引:0,他引:2  
本室以前的工作表明:电针(2H_z,3V,30min/d)刺激 SD 大鼠双侧足三里-三阴交,5d后,大鼠血清中产生出淋巴细胞转化抑制因子,本工作对此抑制因子的作用机制进行了初步研究,主要结果如下:(1)电针大鼠的血清不仅显著抑制 Con A 刺激的小鼠淋巴结 T 淋巴细胞转化,还可显著抑制 Con A 刺激的小鼠胸腺细胞和脾脏 T 淋巴细胞转化;同时也发现电针大鼠的血清能显著抑制脂多糖(LPS)刺激的小鼠淋巴结 B 淋巴细胞转化。提示此淋巴细胞转化抑制因子对不同淋巴器官及不同类型的淋巴细胞无选择性作用。(2)将电针大鼠的血清同小鼠淋巴结细胞培养1h,电针大鼠的血清就可显著抑制 Con A 刺激的 T 淋巴细胞转化;将小鼠淋巴结细胞同 Con A 预培养30min,电针大鼠的血清的抑制作用便消失,提示电针大鼠血清中淋巴细胞转化抑制因子作用于 Con A 刺激 T 淋巴细胞活化的早期阶段,同时也排除了此抑制因子的细胞毒作用。(3)电针大鼠的血清显著抑制蛋白激酶 C(PKC)激活剂 PMA和 PMA 加 ca~(2+)通道 A23187刺激的小鼠淋巴结细胞转化,提示淋巴细胞转化抑制因子通过抑制 PKC 的活性或抑制 PKC 介导的细胞活化通路,抑制有丝分裂原刺激的淋巴细胞转化。  相似文献   

15.
The effect of single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1.2, 6 or 30 μg/kg i.p.) on primary humoral antibody production was studied in young adult C57 BL/6J mice. TCDD profoundly suppressed the primary response to thymus-dependent (sheep erythrocytes) and independent (type III pneumococcal polysaccharide) antigens. The inhibitory effect of TCDD was still detectable 42 days after treatment. In contrast, under these experimental conditions, in vitro lymphoproliferative responses to Concanavalin A (Con A) and bacterial lypopolysaccharides and the ability to mediate graft versus host reaction were not significantly affected per unit number of lymphoid cells.  相似文献   

16.
Abstract: In the course of the purification of 14-3-3 protein (14-3-3) we found that 14-3-3 isolated from bovine forebrain activates protein kinase C (PKC), rather than the previously reported protein kinase C inhibitory activity (KCIP). We have characterized the 14-3-3 activation of PKC. The physical properties of purified PKC activator are the same as those previously reported for 14-3-3 and KCIP; i.e., (1) it is composed of subunits of molecular weight 32,000, 30,000, and 29,000; (2) it is homogeneous with respect to molecular weight, as judged by native gradient-gel electrophoresis, with a molecular weight of 53,000; and (3) it is composed of at least six isoforms when analyzed by reverse-phase HPLC. The concentration dependence of PKC activation by 14-3-3 is in the same range as that shown previously for KCIP inhibition of PKC, and as that required for 14-3-3 activation of tyrosine hydroxylase; a maximal stimulation of two- to three-fold occurs at 40–100 µg/ml. 14-3-3's activation of PKC is sensitive to α-chymotrypsin digestion but is not heat labile. Activation is specific to PKC; at least two other protein kinases, cyclic AMP- and calcium/calmodulin-dependent protein kinases, are not activated. The activation of PKC by 14-3-3 is independent of phosphatidylserine and calcium and, as such, is an alternative mechanism for the activation of PKC that obviates its translocation to membranes.  相似文献   

17.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 microM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 +/- 0.3 M and 1 microM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 microM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 microM PMA for either 1 or 24 h did not significantly change the K(D) and Bmax of the BK receptor for binding (control: K(D) = 1.7 +/- 0.2 nM; Bmax = 47.3 +/- 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these results demonstrate that translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

18.
Corticotropin releasing factor (CRF) reduces food intake in rats after central administration. In these studies we examined whether the adrenal gland and the vagus were involved in CRF suppression of intake. One hour intake was reduced by a 5 μg (ICV) injection of CRF in sham but not adrenalectomized rats maintained on 0.9% NaCl. In a separate experiment on rats maintained on tap water, the inhibitory effect of CRF (5 μg) lasted at least 4 hours in sham rats whereas adrenalectomized rats did not significantly differ from controls. These experiments suggest that the adrenal gland modulates the feeding response to CRF. As replacement with corticosterone (0.75 mg/kg) in total adrenalectomized rats did not restore responsiveness to 5 or 10 μg of CRF, we next studied whether the adrenal medulla was responsible for the decreased responsiveness to CRF. In rats lacking the adrenal medulla only, food intake was reduced by a 5 μg injection of CRF; in sham rats, intake was significantly reduced by doses as low as 0.1 μg of CRF. An additional experiment examined the effect of gastric vagotomy on the CRF feeding response. Vagotomized rats were as responsive to 5 and 10 μg injections of CRF as sham rats, which suggests that the effect is not dependent on the vagus nerve. These findings indicate that the adrenal gland, primarily the medulla, plays an intermediate role in the reduction of food intake caused by central injections of CRF. This conclusion is consistent with the known effect of CRF on adrenomedullary discharge.  相似文献   

19.
A poly-o-phenylenediamine and multi-wall carbon nanotubes composite (PoPD/MWNTs) modified glassy carbon electrode (GCE) was prepared by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. The morphology of the resulting PoPD/MWNTs composite was characterized by TEM and the electrochemical properties of the modified electrode were characterized by cyclic voltammetry. The electrochemical behavior of calcium dobesilate on PoPD/MWNTs modified electrode was also investigated. The large current response of calcium dobesilate on PoPD/MWNTs modified electrode is probably caused by the synergistic effect of the electrocatalytic property of PoPD and MWNTs. The reductive peak current increased linearly with the concentration of calcium dobesilate in the range of 0.1–1.0 μmol/L and 4.0–400 μmol/L by square wave adsorptive stripping voltammetry, respectively. The detection limit (three times the signal blank/slope) was 0.035 μmol/L. The modified electrode could eliminate the interference of dopamine, norepinephrine and epinephrine at 100-, 90- and 70-fold concentration of 1.0 μmol/L calcium dobesilate, respectively. The proposed modified electrode provides a new promising and alternative way to detect calcium dobesilate.  相似文献   

20.
Protein kinase C (PKC) is a member of serine/threonine protein kinase family that plays important roles in the control of vast variety of cellular functions. Nevertheless, the regulatory effect of PKC on adipogenesis remained not well understood. In this study, we investigated the effect of several PKC isoforms on the adipogenic conversion of 3T3-L1 preadipocytes induced by dexamethasone, isobutylmethylxanthine and insulin. Treatment of cells with broad-spectrum PKC inhibitor Rö318220 suppressed the adipogenesis. Gö6976, a selective inhibitor for PKC isoforms-, -βI and -μ, also inhibited the adipogenesis of cells. Pretreatment of cells with peroxisomal proliferator activated receptor-γ (PPARγ) agonist troglitazone abolished the inhibitory effect of Gö6976 on adipogenesis. The plasmic membrane translocation of PKC-βI was observed at the first 2 days of differentiation. Whereas no translocation of PKC- and -μ was observed. Overexpression of dominant negative PKC-βI, but not wild-type PKC-βI, blocked adipogenesis. This effect of dominant negative PKC-βI can be reversed by troglitazone, suggesting that PKC-βI is required for the initiation of adipogenesis. In addition, rottlerin, a specific inhibitor of PKC-δ, can reverse the suppression of adipogenesis mediated by 12-O-tetradecanoyl-phorbol-13-acetate, transforming growth factor-β1, and epidermal growth factor. These data suggest that PKC-βI is important in the induction of adipogenesis, while the PKC-δ has an inhibitory role for adipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号