首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Weiming Ye 《Physics letters. A》2010,374(25):2521-4755
Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) [1] to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.  相似文献   

2.
In neural networks, both excitatory and inhibitory cells play important roles in determining the functions of systems. Various dynamical networks have been proposed as artificial neural networks to study the properties of biological systems where the influences of excitatory nodes have been extensively investigated while those of inhibitory nodes have been studied much less. In this paper, we consider a model of oscillatory networks of excitable Boolean maps consisting of both excitatory and inhibitory nodes, focusing on the roles of inhibitory nodes. We find that inhibitory nodes in sparse networks (small average connection degree) play decisive roles in weakening oscillations, and oscillation death occurs after continual weakening of oscillation for sufficiently high inhibitory node density. In the sharp contrast, increasing inhibitory nodes in dense networks may result in the increase of oscillation amplitude and sudden oscillation death at much lower inhibitory node density and the nearly highest excitation activities. Mechanism under these peculiar behaviors of dense networks is explained by the competition of the duplex effects of inhibitory nodes.  相似文献   

3.
This review describes the investigations of oscillatory complex networks consisting of excitable nodes,focusing on the target wave patterns or say the target wave attractors.A method of dominant phase advanced driving(DPAD) is introduced to reveal the dynamic structures in the networks supporting oscillations,such as the oscillation sources and the main excitation propagation paths from the sources to the whole networks.The target center nodes and their drivers are regarded as the key nodes which can completely determine the corresponding target wave patterns.Therefore,the center(say node A) and its driver(say node B) of a target wave can be used as a label,(A,B),of the given target pattern.The label can give a clue to conveniently retrieve,suppress,and control the target waves.Statistical investigations,both theoretically from the label analysis and numerically from direct simulations of network dynamics,show that there exist huge numbers of target wave attractors in excitable complex networks if the system size is large,and all these attractors can be labeled and easily controlled based on the information given by the labels.The possible applications of the physical ideas and the mathematical methods about multiplicity and labelability of attractors to memory problems of neural networks are briefly discussed.  相似文献   

4.
Bo Yang  Tao Huang  Xu Li 《Physics letters. A》2019,383(30):125870
A central concept in network analysis is that of similarity between nodes. In this paper, we introduce a dynamic time-series approach to quantifying the similarity between nodes in networks. The problem of measuring node similarity is exquisitely embedded into the framework of time series for state evolution of nodes. We develop a deterministic parameter-free diffusion model to drive the dynamic evolution of node states, and produce a unique time series for each source node. Then we introduce a measure quantifying how far all the other nodes are located from each source one. Following this measure, a quantity called dissimilarity index is proposed to signify the extent of similarity between nodes. Thereof, our dissimilarity index gives a deep and natural integration between the local and global perspectives of topological structure of networks. Furthermore, we apply our dissimilarity index to unveil community structure in networks, which verifies the proposed dissimilarity index.  相似文献   

5.
There is an abundance of literature on complex networks describing a variety of relationships among units in social, biological, and technological systems. Such networks, consisting of interconnected nodes, are often self-organized, naturally emerging without any overarching designs on topological structure yet enabling efficient interactions among nodes. Here we show that the number of nodes and the density of connections in such self-organized networks exhibit a power law relationship. We examined the size and connection density of 47 self-organizing networks of various biological, social, and technological origins, and found that the size-density relationship follows a fractal relationship spanning over 6 orders of magnitude. This finding indicates that there is an optimal connection density in self-organized networks following fractal scaling regardless of their sizes.  相似文献   

6.
杜瑞瑾  董高高  田立新  郑松  孙梅 《中国物理 B》2010,19(7):70509-070509
This paper first investigates the projective synchronisation problem with non-delayed and delayed coupling between drive-response dynamical networks consisting of identical nodes and different nodes.Based on Lyapunov stability theory,several nonlinear controllers are applied to achieve the projective synchronisation between the drive-response dynamical networks;simultaneously the topological structure of the drive dynamical complex networks can be exactly identified.Moreover,numerical examples are presented to verify the feasibility and effectiveness of the theorems.  相似文献   

7.
We have studied the dynamic conductivity of a composite consisting of well- and weak-conducting components with random fractal structure. In order to calculate effective properties of composite medium, we used hierarchic structure model and innovative iterative averaging method based on renormalization group transformations idea. Our results show, that the behavior of a composite over a magnetic field become even more complicated.Unusual peaks and oscillations appear in frequency dependencies of effective conductivity, permittivity and other properties. We discuss the influence of fractal parameters of the composite structure on such unusual behavior of effective properties.  相似文献   

8.
We study the criticality in excitatory-inhibitory networks consisting of excitable elements. We investigate the effects of the inhibitory strength using both numerical simulations and theoretical analysis. We show that the inhibitory strength cannot affect the critical point. The dynamic range is decreased as the inhibitory strength increases.To simulate of decreasing the efficacy of excitation and inhibition which was studied in experiments, we remove excitatory or inhibitory nodes, delete excitatory or inhibitory links, and weaken excitatory or inhibitory coupling strength in critical excitatory-inhibitory network. Decreasing the excitation, the change of the dynamic range is most dramatic as the same as previous experimental results. However, decreasing inhibition has no effect on the criticality in excitatory-inhibitory network.  相似文献   

9.
Ruiqiu Ou  Jianmei Yang 《Physica A》2012,391(3):887-894
Since many large real networks tend to present scale-free degree distribution, this paper investigates the structural properties of scale-free networks with finite size. Beginning with a comprehensive analysis of the degree distribution consisting of the concentration trend, dispersion and inequality, this paper then focuses on the discussion of heterogeneity and hub nodes of scale-free networks. The findings will help to improve our understanding of the structure and function of real networks.  相似文献   

10.
We study a zero range process on scale-free networks in order to investigate how network structure influences particle dynamics. The zero range process is defined with the rate p(n) = n(delta) at which particles hop out of nodes with n particles. We show analytically that a complete condensation occurs when delta < or = delta(c) triple bond 1/(gamma-1) where gamma is the degree distribution exponent of the underlying networks. In the complete condensation, those nodes whose degree is higher than a threshold are occupied by macroscopic numbers of particles, while the other nodes are occupied by negligible numbers of particles. We also show numerically that the relaxation time follows a power-law scaling tau approximately L(z) with the network size L and a dynamic exponent z in the condensed phase.  相似文献   

11.
As exemplified by power grids and large-scale brain networks, some functions of networks consisting of phase oscillators rely on not only frequency synchronization, but also phase synchronization among the oscillators. Nevertheless, even after the oscillators reach frequency-synchronized status, the phase synchronization is not always accomplished because the phase difference among the oscillators is often trapped at non-zero constant values. Such phase difference potentially results in inefficient transfer of power or information among the oscillators, and avoids proper and efficient functioning of the networks. In the present study, we newly define synchronization cost by using the phase difference among the frequency-synchronized oscillators, and investigate the optimal network structure with the minimum synchronization cost through rewiring-based optimization. By using the Kuramoto model, we demonstrate that the cost is minimized in a network with a rich-club topology, which comprises the densely-connected center nodes and low-degree peripheral nodes connecting with the center module. We also show that the network topology is characterized by its bimodal degree distribution, which is quantified by Wolfson’s polarization index.  相似文献   

12.
We study the phenomenon of stochastic resonance on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion channel noise by which the outreach of the pacemaker extends optimally across the whole network. This stochastic resonance phenomenon can be further amplified via fine-tuning of the small-world network structure, and depends significantly also on the coupling strength among neurons and the driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency of subthreshold oscillations. The implications of our findings for weak signal detection and information propagation across neural networks are discussed.  相似文献   

13.
We develop the formalism for computing the oscillations of the specific heat and thermal transport under rotated magnetic field in multiband superconductors with anisotropic gap and apply it to iron-based materials. We show that these oscillations change sign at low temperatures and fields, which strongly influences the experimental conclusions about the gap structure. We find that recent measurements of the specific heat oscillations indicate that the iron-based superconductors possess an anisotropic gap with deep minima or nodes close to the line connecting electron and hole pockets. We predict the behavior of the thermal conductivity that will help distinguish between these cases.  相似文献   

14.
Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways.  相似文献   

15.
Yuki Naganuma  Akito Igarashi   《Physica A》2010,389(3):623-628
We propose a dynamic packet routing strategy by using neural networks on scale-free networks. In this strategy, in order to determine the nodes to which the packets should be transmitted, we use path lengths to the destinations of the packets, and adjust the connection weights of the neural networks attached to the nodes from local information and the path lengths. The performances of this strategy on scale-free networks which have the same degree distribution and different degree correlations are compared to one another. Our numerical simulations confirm that this routing strategy is more effective than the shortest path based strategy on scale-free networks with any degree correlations and that the performance of our strategy on assortative scale-free networks is better than that on disassortative and uncorrelated scale-free networks.  相似文献   

16.
In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules according to their pattern of intra- and extra-module links. We use our method to analyze the modular structures of the ER random networks. We find that different modules of networks have different structure properties, such as the clustering coefficient. Moreover, at the same time, many nodes of networks participate different modules. Remarkably, we find that in the ER random networks, when the probability p is small, different modules or different roles of nodes can be Mentified by different regions in the c-p parameter space.  相似文献   

17.
This work explores a system of two coupled networks that each has four nodes. Delayed effects of short-cuts in each network and the coupling between the two groups are considered. When the short-cut delay is fixed, the arising and death of oscillations are caused by the variational coupling delay.  相似文献   

18.
In the dynamic processes on networks collective effects emerge due to the couplings between nodes, where the network structure may play an important role. Interaction along many network links in the nonlinear dynamics may lead to a kind of chaotic collective behavior. Here we study two types of well-defined diffusive dynamics on scale-free trees: traffic of packets as navigated random walks, and chaotic standard maps coupled along the network links. We show that in both cases robust collective dynamic effects appear, which can be measured statistically and related to non-ergodicity of the dynamics on the network. Specifically, we find universal features in the fluctuations of time series and appropriately defined return-time statistics.   相似文献   

19.
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.  相似文献   

20.
The largest eigenvalue of the adjacency matrix of networks is a key quantity determining several important dynamical processes on complex networks. Based on this fact, we present a quantitative, objective characterization of the dynamical importance of network nodes and links in terms of their effect on the largest eigenvalue. We show how our characterization of the dynamical importance of nodes can be affected by degree-degree correlations and network community structure. We discuss how our characterization can be used to optimize techniques for controlling certain network dynamical processes and apply our results to real networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号