首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal hydrides are promising means for compact hydrogen storage. However, the poor heat transfer in the tank packed with metal hydride powders often hinders the system from charging or discharging hydrogen effectively. In this investigation, a tube‐fin heat exchanger is supposed to be inserted to the tank, and an optimization problem accounting for both heat transfer enhancement and cost is formulated. We solve the problem with approximate analytical methods, and the influences of fin geometry are discussed. The comparison results support using quadratic curve‐shaped fins, whose effectiveness is also proved by the numerical simulation results. Furthermore, a novel multilayer fin structure with varying width is proposed, and the key parameters of it are discussed, including the number and the arrangement of fins. This paper is expected to provide new insights for the heat transfer enhancement design of hydride‐based hydrogen storage system.  相似文献   

2.
In this work are present the results obtained from the electrochemical characterization of a metal hydride type MmNi5?XMX impregnated with palladium, palladium–nickel and nickel nanoparticles as catalytic precursors for hydrogen absorption. The hydrogen absorption was investigated in the charge/discharge mechanism of a metal hydride via electrochemical process. The complete study involved the analysis of linear and anodic polarization, charge/discharge cycles, the application of an electrochemical model and electrochemical impedance spectroscopy to investigate the amount of hydrogen absorbed as a function of the catalytic precursors. The use of Pd nanoparticles showed the best results as catalytic precursor to absorb more hydrogen than other precursor systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Metal-hydride (MH) reactors are one of the most promising approaches for hydrogen storage because of their low operating pressure, high storage volumetric density and high security. However, the heat transfer performance of the MH reactor for high hydrogenation rate is inferior. In this study, the heat transfer and hydrogen absorption process of metal hydride tank performance in Mg2Ni bed is analyzed numerically using commercial ANSYS-FLUENT software. The MH reactor is considered a cylindrical bed including a helical tube along with a central straight return tube for the cooling fluid. The effects of geometrical parameters including the tube diameter, the pitch size and the coil diameter as well as operational parameters on the heat exchanged and hydrogen absorption reactive time are evaluated comprehensively. The results showed that the helical heat exchanger along with central return tube could effectively improve heat exchanged between the cooling fluid and the metal alloy and reduce the temperature of the bed results in a higher rate of hydrogen absorption. For a proper configuration and geometry of the helical coil heat exchanger with a central return tube, the absorption reaction time is reduced by 24% to reach 90% of the storage capacity. After the optimization study of the geometrical parameters, a system with the heat exchanger tube diameter of 5 mm, coil diameter of 18 mm and the coil pitch value of 10 mm is recommended to have lower hydrogen absorption time and higher hydrogen storage capacity. The presented MH reactor can be applied for improvement of heat exchange and absorption process in industrial MH reactors.  相似文献   

4.
The present article reports the activation and testing of large scale metal hydride based hydrogen storage system (MHHSS) for industrial application. The metal hydride reactor is fabricated using SS316 material with 99 embedded cooling tube and filled with 40 kg of LaNi4.7Al0.3. The activation was carried out by successive absorption and desorption processes. In the third absorption cycle, MHHSS had absorbed 552.356 g of hydrogen to reach a maximum storage capacity of 1.4 wt% at 40 bar pressure and 30 °C temperature. The testing of MHHSS was carried out by varying H2 supply pressure, absorption and desorption temperatures and heat transfer fluid (HTF) flow rate. It was observed that the supply pressure has significant effect on absorption rate, and the optimum supply pressure was observed in the range of 10–15 bar. Similarly, during the desorption cycle, optimum desorption temperature was found in the range of 80–90 °C. The optimum flow velocity for HTF was observed in the range of 20–30 lpm.  相似文献   

5.
Nowadays, metal hydrides are generally deemed as one of the most potential materials that are in favor of compact hydrogen storage for industrial applications. This work was committed to evaluate the thermal performance of a circular‐shaped‐tube thin double‐layered hydrogen storage reactor using a three‐dimensional model. Finite element simulations were conducted to systematically study the influences of structural geometries, cooling patterns, and material thermophysical properties on the heat diffusion behavior under the framework of convection heat transfer. The results indicate that the proposed model effectively characterizes temperature evolutions during hydrogen absorption process. Moreover, a statistical analysis was performed to reveal the sensitivity sequence of these factors on the total thermal performance, suggesting that decreasing the hydride layer thickness, increasing the number of U‐shaped cooling tubes, accelerating the cooling fluid flow rate, and enhancing the thermal conductivity are more beneficial to the thermal performance improvement. Detailed analysis confirms the possibility of developing the present hydrogen storage tank utilizing metal hydrides for engineering practice.  相似文献   

6.
There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.  相似文献   

7.
In this paper, a two-dimensional computational investigation of coupled heat and mass transfer process in an annular cylindrical hydrogen storage device filled with MmNi4.6Al0.4MmNi4.6Al0.4 is presented using a commercial software FLUENT 6.1.22. Hydrogen storage performance of the device is studied by varying the operating parameters such as hydrogen supply pressure and absorption temperature. Further, the effects of various bed parameters such as hydride bed thickness and overall heat transfer coefficient on the storage performance of the device are also studied. The average temperature of the hydriding bed and hydrogen storage capacity at different supply pressures showed good agreement with the experimental data reported in the literature. It is observed that as the hydriding process is initiated, the absorption of hydrogen increases rapidly and then it slows down after the temperature of the hydride bed increases due to the heat of the reaction. At any given absorption temperature, the hydrogen absorption rate and hydrogen storage capacity are found to increase with the supply pressure. The variation in the hydrogen absorption capacity, rate of reaction and temperature profiles at different supply pressures from 5 to 35 bar in steps of 5 bar are presented. Further, the effects of overall heat transfer coefficients from 750 to 1250 W/m2 K and cooling fluid temperatures from 288 to 298 K on hydrogen storage capacity are also investigated. It is shown that the heat transfer rate enhances the hydriding rate by accomplishing a rapid reaction. At the supply condition of 35 bar and 298 K, MmNi4.6Al0.4MmNi4.6Al0.4 stores about 13.1 g of hydrogen per kg of alloy.  相似文献   

8.
Flow characteristics of a circulating gas–solid fluidized-bed heat exchanger with multiple vertical pipes were studied. The glass beads were circulated inside the vertical pipes of the heat exchanger with fluidizing air. The pressure drop and the circulation rate of solid particles were measured. In addition, one-dimensional velocity distribution of solid particles and the pressure distribution inside the vertical pipe were analysed. The prediction on the pressure drop with the circulation of solid particles was proved to be reasonably accurate by comparing with the measured results. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Process conditions for the direct solar decomposition of sulfur trioxide have been investigated and optimized by using a receiver–reactor in a solar furnace. This decomposition reaction is a key step to couple concentrated solar radiation or solar high‐temperature heat into promising sulfur‐based thermochemical cycles for solar production of hydrogen from water. After proof‐of‐principle a modified design of the reactor was applied. A separated chamber for the evaporation of the sulfuric acid, which is the precursor of sulfur trioxide in the mentioned thermochemical cycles, a higher mass flow of reactants, an independent control and optimization of the decomposition reactor were possible. Higher mass flows of the reactants improve the reactor efficiency because energy losses are almost independent of the mass flow due to the predominant contribution of re‐radiation losses. The influence of absorber temperature, mass flow, reactant initial concentration, acid concentration, and residence time on sulfur trioxide conversion and reactor efficiency has been investigated systematically. The experimental investigation was accompanied by energy balancing of the reactor for typical operational points. The absorber temperature turned out to be the most important parameter with respect to both conversion and efficiency. When the reactor was applied for solar sulfur trioxide decomposition only, reactor efficiencies of up to 40% were achieved at average absorber temperature well below 1000°C. High conversions almost up to the maximum achievable conversion determined by thermodynamic equilibrium were achieved. As the re‐radiation of the absorber is the main contribution to energy losses of the reactor, a cavity design is predicted to be the preferable way to further raise the efficiency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The present work reports studies on the mixing and combustion characteristics of cotton stalk (CS) with 10–100 mm in length in a fluidized bed. Effects of length and initial weight percentage of CS, diameter of alumina bed material as well as gas velocity on the mixing characteristics of CS with alumina were investigated. CS can mix well with 0.6–1 mm alumina at fluidization number N=3–8.  相似文献   

11.
A metal-organic framework based on Ni (II) as metal ion and trimasic acid (TMA) as organic linker was synthesized and introduced into MgH2 to prepare a Mg-(TMA-Ni MOF)-H composite through ball-milling. The microstructures, phase changes and hydrogen storage behaviors of the composite were systematically studied. It can be found that Ni ion in TMA-Ni MOF is attracted by Mg to form nano-sized Mg2Ni/Mg2NiH4 after de/rehydrogenation. The hydriding and dehydriding enthalpies of the Mg-MOF-H composite are evaluated to be −74.3 and 78.7 kJ mol−1 H2, respectively, which means that the thermodynamics of Mg remains unchanged. The absorption kinetics of the Mg-MOF-H composite is improved by showing an activation energy of 51.2 kJ mol−1 H2. The onset desorption temperature of the composite is 167.8 K lower than that of the pure MgH2 at the heating rate of 10 K/min. Such a significant enhancement on the sorption kinetic properties of the composite is attributed to the catalytic effects of the nanoscale Mg2Ni/Mg2NiH4 derived from TMA-Ni MOF by providing gateways for hydrogen diffusion during re/dehydrogenation processes.  相似文献   

12.
This paper summarizes the experimental results of sawdust gasification in a spout–fluid bed reactor. Three scenarios were investigated in this study. In the base case scenario, a total of 15 experiments consisting of three different flow rates (55, 65 and 75 m3 h? 1) of primary air of each of having five equivalence ratios (ER) (0.35, 0.3, 0.25, 0.2 and 0.15) were conducted. The influence of secondary air in the freeboard and the effect of the recirculation of carryover captured by the cyclone to the reactor's freeboard at an ER of 0.25 were investigated in two other scenarios. Higher heating values of 3.02 and 5.15 MJ Nm? 3 were obtained with the ER values of 0.35 and 0.15, respectively, in the base case. However, opposite trend was observed for the tar content in the producer gas. At ER of 0.35, a value of 2.35 g Nm? 3 was found compared with 8.4 g Nm? 3 at ER of 0.15. The tar content in the producer gas was reduced from 5.63 to 1.53 g Nm? 3 when secondary air was supplied in the freeboard due to an increase in temperature. The gasification efficiency was increased from 24.96% at the base case to 36.22% with the recirculation of carryover. Higher heating value of producer gas was found to be 4.2–4.4 MJ Nm? 3 in this case. The second law analysis of this process estimated the average exergy efficiency as 35.92% at ER of 0.35 and it increased with increasing ER. The recirculation of carryover not only increased the carbon conversion efficiency but also the exergy efficiency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Pairs of low‐temperature (La0.9Ce0.1Ni5 and La0.8Ce0.2Ni5) and high‐temperature (LaNi4.7Al0.3 and LaNi4.6Al0.4) LaNi5 hydrides were used for thermodynamic analysis of metal hydride‐based solid sorption refrigeration system (SSRS). In general, static pressure–concentration isotherm (PCI) properties were considered for the thermodynamic analysis of solid sorption thermodynamic cycles. But, the hydrogen transfer processes involved in the thermodynamic cycle are dynamic in nature. Therefore, in the present study, the dynamic PCIs of these metal hydrides were measured at different temperatures and compared with their static PCIs. Significant variation in PCI and thermodynamic properties were observed in dynamic conditions compared with static conditions. Later, the performance of SSRS was determined by using static and dynamic PCI properties. Refrigeration effect and coefficient of performance of SSRS decreased by 60% and 35% respectively, when dynamic (at 80 mi/min) PCI data were considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The multi‐stage fluidized bed can be used to preheat the combustion air by recovering the waste heat from the exhaust gas from industrial furnaces. The dilute‐phase fluidized bed may be formed to exclude the excessive pressure drop across the multi‐stage fluidized bed. But, in this case, the solid particles do not reach to the thermal equilibrium due to relatively short residence time in each layer of fluidized bed. In this study, a theoretical analysis on the dilute phase multistage fluidized bed heat exchanger was performed. A parameter related to the degree of thermal equilibrium between gas and solid particles at the dilute‐phase fluidized beds was derived. Using this parameter, a relatively simple expression was obtained for the thermal efficiencies of the multi‐stage fluidized bed heat exchanger and air preheater. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In the present study, experimental and analytical thermal performance of automobile radiator using nanofluids is investigated and compared with performance obtained with conventional coolants. Effect of operating parameters and nanoparticle concentration on heat transfer rate are studied for water as well as CuO/EG‐water based nanofluid analytically. The results are presented in the form of graphs showing variations of net heat transfer rate for various coolant flow rate, air velocity, and source temperature for various CuO/EG‐water based nanofluids. Experimental results indicate that with the increase in coolant flow rate and air velocity, heat transfer rate increases, reaches maximum and then decreases. Experimental investigation of a radiator is carried out using CuO/EG‐water based nanofluids. Results obtained by experimental work and analytical MATLAB code are almost the same. Maximum absolute error in water and air side is within 12% for all flow condition and coolant fluids. Nusselt number of nanofluid is calculated using equation number 33[9]. The results obtained from experimental work using 0.2% volume CuO/EG‐water based nanofluids are compared with the results obtained from MATLAB code. The results show that the maximum error in the outlet temperature of the coolant and air is 12% in each case. Thus MATLAB code can be used for different concentration of nanofluids to study the effect of operating parameters on heat transfer rate. Thus MATLAB code developed is valid for given heat exchanger applications. From the results obtained by already validated MATLAB code, it is concluded that increase in coolant flow rate, air velocity, and source temperature increases the heat transfer rate. Addition of nanoparticles in the base fluid increases the heat transfer rate for all kind of base fluids. Among all the nanofluid analyzed in this study, water‐based nanofluid gives highest value of heat transfer rate and is recommended for the heat exchanger applications under normal operating conditions. Maximum enhancement is observed for ethylene glycol‐water (4:6) mixture for 1% volume concentration of CuO is almost equal to 20%. As heat transfer rate increases with the use of nanofluids, the heat transfer area of the radiator can be minimized.  相似文献   

16.
High energy consumption is considered to be one of the most persistent problems in liquid hydrogen (LH2) plants. The combination of heat exchanger and ortho-para (O–P) hydrogen conversion has attracted considerable attention as a cutting-edge technology to reduce energy consumption. The flow and heat transfer characteristics of O–P hydrogen conversion catalyst-filled spiral wound heat exchanger (SWHE) were investigated in this study in two steps. In the first step, pressure-drop experiments were performed in a tube filled with porous media. The results indicated that the pressure drop was overestimated when using Ergun's equation. Therefore, a new empirical pressure-drop correlation for a channel filled with O–P catalyst was formulated. Subsequently, a novel heat transfer model was established based on this correlation for further numerical simulations. The distributions of the temperature, pressure, and para hydrogen content in a catalyst-filled tube were determined. In addition, the influence of the flow rate on the heat exchange coefficient and outlet para hydrogen was clarified; it was found that, with an increase in the flow rate, the heat exchange coefficient increased, whereas the outlet para hydrogen content decreased. At a flow rate of 0.5 m3/h, the para hydrogen content increased by 44% after hydrogen flowed through the channel filled with the O–P catalyst. Furthermore, a prediction model for the para hydrogen content with a flow rate range of 0–1.5 m3/h was derived. This study provides promising theoretical evidence for the engineering application of SWHEs filled with O–P catalysts in large-scale hydrogen liquefaction units.  相似文献   

17.
The effects of different distributor configurations on the flow distribution in plate‐fin heat exchangers were studied. It was found that an irrational distributor configuration would lead to the flow maldistribution and a different degree of non‐uniformity of the flow distribution in the transverse and longitudinal directions. The distributor configuration and Reynolds number are the main factors affecting the flow distribution. An improved distributor configuration with a fluid complementary cavity has been brought forward. The experimental results showed that the improved distributor configuration can effectively improve the performance of flow distribution in heat exchangers. The best performance of flow distribution was obtained at h/H = 0.2. The correlations between the flow maldistribution characteristic and the flow Reynolds number for different distributor configurations were deduced according to the experimental data. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(6): 402–410, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20023  相似文献   

18.
Exergy–energy analysis of the plate heat exchanger is experimentally performed with different Al2O3–MgO hybrid nanofluid (HyNf) as a hot fluid. There were six combinations of fluids, namely, deionized (DI) water, ethylene glycol–DI water brine (1:9 volume ratio), propylene glycol–DI water brine (1:9 volume ratio), base fluids and their respective Al2O3–MgO (4:1 particle volume ratio) HyNfs of 0.1% total volume concentration. The effects of different flow rates and hot inlet temperatures on the heat transfer rate, heat transfer coefficient, pump work, irreversibility, and performance index (PI) are investigated. It is witnessed that the heat transfer rate, heat transfer coefficient, pump work, and irreversibility enhances with the flow rate and nanoparticle suspension. While the PI declines with a rise in the flow rate, the heat transfer rate, heat transfer coefficient, PI, and irreversibility rise up maximum for MgO–alumina (1:4) DI water HyNf upto 11.8%, 31.7%, 11.1%, and 4.05%, respectively. The pump work enhances upto 1.6% for MgO–alumina (1:4)/EG–DI water (1:9) HyNf.  相似文献   

19.
In this paper a detailed experimental analysis of a metal hydride based cooling system is presented. For the high temperature side an AB5 type alloy (LmNi4.91Sn0.15) was chosen, whereas an AB2 type alloy (Ti0.99Zr0.01V0.43Fe0.09Cr0.05Mn1.5) is used for the low temperature side. Due to very good heat and also mass transfer characteristics (among others, large heat transfer surface area) of the utilized capillary tube bundle reaction bed, very short half-cycle times in the order of 100 s have been reached. Consequently, the specific cooling power of the system is up to 780 W per kg desorbing metal hydride – depending on the temperature boundary conditions. The system was experimentally analyzed for different cooling and ambient temperatures, whereas the heating temperature was fixed to 130 °C.  相似文献   

20.
The thermal performance of a chemical heat pump that uses the reaction system of calcium oxide/lead oxide/carbon dioxide, which is developed for utilization of high‐temperature heat above 800°C, is studied experimentally. The thermal performance of a packed‐bed reactor of a calcium oxide/carbon dioxide reaction system, which stores and transforms a high‐temperature heat source in the heat pump operation, is examined under various heat pump operation conditions. The energy analysis based on the experiment shows that it is possible to utilize high‐temperature heat with this heat pump. This heat pump can store heat above 850°C and then transform it into a heat above 900°C under an approximate atmospheric pressure. An applied system that combines the heat pump and a high‐temperature process is proposed for high‐efficiency heat utilization. The scale of the heat pump in the combined system is estimated from the experimental results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号