首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A novel degradation‐restructuring induced anisotropic epitaxial growth strategy is demonstrated for the synthesis of uniform 1D diblock and triblock silica mesoporous asymmetric nanorods with controllable rod length (50 nm to 2 µm) and very high surface area of 1200 m2 g?1. The asymmetric diblock mesoporous silica nanocomposites are composed of a 1D mesoporous organosilicate nanorod with highly ordered hexagonal mesostructure, and a closely connected dense SiO2 nanosphere located only on one side of the nanorods. Furthermore, the triblock mesoporous silica nanocomposites constituted by a cubic mesostructured nanocube, a nanosphere with radial mesopores, and a hexagonal mesostructured nanorod can also be fabricated with the anisotropic growth of mesopores. Owing to the ultrahigh surface area, unique 1D mesochannels, and functionality asymmetry, the obtained match‐like asymmetric Au‐NR@SiO2&EPMO (EPMO = ethane bridged periodic mesoporous organosilica) mesoporous nanorods can be used as an ideal nanocarrier for the near‐infrared photothermal triggered controllable releasing of drug molecules.  相似文献   

2.
Nanocasting, using ordered mesoporous silica or carbon as a hard template, has enormous potential for preparing novel mesoporous materials with new structures and compositions. Although a variety of mesoporous materials have been synthesized in recent years, the growth mechanism of nanostructures in a confined space, such as mesoporous channels, is not well understood, which hampers the controlled synthesis and further application of mesoporous materials. Here, the nucleation and growth of WO3‐networked mesostructures within an ordered mesoporous matrix, using an in situ transmission electron microscopy heating technique and in situ synchrotron small‐angle X‐ray scattering spectroscopy, are probed. It is found that the formation of WO3 mesostructures involves a particle‐mediated transformation and coalescence mechanism. The liquid‐like particle‐mediated aggregation and mesoscale transformation process can occur in ≈10 nm confined mesoporous channels, which is completely unexpected. The detailed mechanistic study will be of great help for experimental design and to exploit a variety of mesoporous materials for diverse applications, such as catalysis, absorption, separation, energy storage, biomedicine, and nanooptics.  相似文献   

3.
Nanomeshes with highly regular, permeable pores in plane, combining the exceptional porous architectures with intrinsic properties of 2D materials, have attracted increasing attention in recent years. Herein, a series of 2D ultrathin metal–organic nanomeshes with ordered mesopores is obtained by a self‐assembly method, including metal phosphate and metal phosphonate. The resultant mesoporous ferric phytate nanomeshes feature unique 2D ultrathin monolayer morphologies ( ≈ 9 nm thickness), hexagonally ordered, permeable mesopores of ≈ 16 nm, as well as improved surface area and pore volume. Notably, the obtained ferric phytate nanomeshes can directly in situ convert into mesoporous sulfur‐doped metal phosphonate nanomeshes by serving as an unprecedented reactive self‐template. Furthermore, as advanced anode materials for Li‐ion batteries, they deliver excellent capacity, good rate capability, and cycling performance, greatly exceeding the similar metal phosphate‐based materials reported previously, resulting from their unique 2D ultrathin mesoporous structure. Therefore, the work will pave an avenue for constructing the other 2D ordered mesoporous materials, and thus offer new opportunities for them in diverse areas.  相似文献   

4.
A photoprecursor Pc 227 is covalently bound onto gold nanoparticles (Au NPs) to produce the known photodynamic therapy (PDT) drug Pc 4 upon 660 nm photoirradiation. The photochemical formation of the photoproduct Pc 4 is identified by spectroscopy, chromatography, and mass spectrometry and its PDT efficacy is equal to Pc 4 when administered non‐covalently by Au NPs, with the added benefit of improved covalent delivery and targeted NIR‐triggered release from the covalent Pc 227‐Au NP conjugate, while during transport the attached Pc 227 is quenched by the Au NP and PDT inactivated.  相似文献   

5.
This article describes a novel supramolecular assembly‐mediated strategy for the organization of Au nanoparticles (NPs) with different shapes (e.g., spheres, rods, and cubes) into large‐area, free‐standing 2D and 3D superlattices. This robust approach involves two major steps: (i) the organization of polymer‐tethered NPs within the assemblies of supramolecular comblike block copolymers (CBCPs), and (ii) the disassembly of the assembled CBCP structures to produce free‐standing NP superlattices. It is demonstrated that the crystal structures and lattice constants of the superlattices can be readily tailored by varying the molecular weight of tethered polymers, the volume fraction of NPs, and the matrix of CBCPs. This template‐free approach may open a new avenue for the assembly of NPs into 2D and 3D structures with a wide range of potential applications.  相似文献   

6.
Self-assembly of inorganic nanoparticles (NPs) into superstructures, which is used as a general way to integrate functional inorganic NPs into macroscale devices, has attracted much research interest. This review will summarize the recent progress and discuss future challenges of the inorganic NP superstructures. Examples include both DNA-based and polymer-based NP assemblies with controlled positioning and geometries, and quasicrystalline ordered structures from the self-assembly of binary or ternary NPs. Different from their individual NP counterparts, these self-assembled superstructures possess unique properties, such as optical chirality and dynamic structural change under an external stimulus. Due to their diversified structures and functionalities, inorganic NP superstructures have shown a wide range of promise for applications in electronic and photonic devices, such as field-effect transistors, magnetoresistive components, optical information recording, and solar cells.  相似文献   

7.
The low elastic modulus and time‐consuming formation process represent the major challenges that impede the penetration of nanoparticle superstructures into daily life applications. As observed in the molecular or atomic crystals, more effective interactions between adjacent nanoparticles would introduce beneficial features to assemblies enabling optimized mechanical properties. Here, a straightforward synthetic strategy is showed that allows fast and scalable fabrication of 2D Ag‐mercaptoalkyl acid superclusters of either hexagonal or lamellar topology. Remarkably, these ordered superstructures exhibit a structure‐dependent elastic modulus which is subject to the tether length of straight‐chain mercaptoalkyl acids or the ratio between silver and tether molecules. These superclusters are plastic and moldable against arbitrarily shaped masters of macroscopic dimensions, thereby opening a wealth of possibilities to develop more nanocrystals with practically useful nanoscopic properties.  相似文献   

8.
Microcapsules consisting of hydrogel shells cross‐linked by glucosamine–boronate ester complexes and duplex nucleic acids, loaded with dyes or drugs and functionalized with Au nanoparticles (Au NPs) or Au nanorods (Au NRs), are developed. Irradiation of Au NPs or Au NRs results in the thermoplasmonic heating of the microcapsules, and the dissociation of the nucleic acid cross‐linkers. The separation of duplex nucleic acid cross‐linkers leads to low‐stiffness hydrogel shells, allowing the release of loads. Switching off the light‐induced plasmonic heating results in the regeneration of stiff hydrogel shells protecting the microcapsules, leading to the blockage of release processes. The thermoplasmonic release of tetramethylrhodamine‐dextran, Texas Red‐dextran, doxorubicin‐dextran (DOX‐D), or camptothecin‐carboxymethylcellulose (CPT‐CMC) from the microcapsules is introduced. By loading the microcapsules with two different drugs (DOX‐D and CPT‐CMC), the light‐controlled dose release is demonstrated. Cellular experiments show efficient permeation of Au NPs/DOX‐D or Au NRs/DOX‐D microcapsules into MDA‐MB‐231 cancer cells and inefficient uptake by MCF‐10A epithelial breast cells. Cytotoxicity experiments reveal selective thermoplasmon‐induced cytotoxicity of the microcapsules toward MDA‐MB‐231 cancer cells as compared to MCF‐10A cells. Also, selective cytotoxicity towards MDA‐MB‐231 cancer cells upon irradiation of the Au NPs‐ and Au NRs‐functionalized microcapsules at λ = 532 or 910 nm is demonstrated.  相似文献   

9.
The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc‐Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc‐Au NPs fluorescently‐labelled with HiLyte Fluor647 (Glc‐Au‐Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a “prebleaching” methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc‐Au‐Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media.  相似文献   

10.
Engineering a facile and controllable approach to modulate the spectral properties of lanthanide‐doped upconversion nanoparticles (UCNPs) is always an ongoing challenge. Herein, long‐range ordered, distinct two‐dimensional (2D) binary nanoparticle superlattices (BNSLs) composed of NaREF4:Yb/Er (RE = Y and Gd) UCNPs and plasmonic metallic nanoparticles (Au NPs), including AB, AB3, and AB13 lattices, are fabricated via a slow evaporation‐driven self‐assembly to achieve plasmonic modulation of upconversion luminescence (UCL). Optical measurements reveal that typical red–green UCL from UCNPs can be effectively modulated into reddish output in BNSLs, with a drastically shortened lifetime. Notably, for AB3‐ and AB13‐type BNSLs with more proximal Au NPs around each UCNP, modified UCL with fine‐structured spectral lineshape is observed. These differences could be interpreted by the interplay of collective plasmon resonance introduced by 2D periodic Au arrays and spectrally selective energy transfer between UCNPs and Au. Thus, fabricating UCNP‐Au BNSLs with desired lattice parameters and NP configurations could be a promising way to tailor the UCL through controlled plasmonic modulation.  相似文献   

11.
《Advanced Powder Technology》2019,30(12):2957-2963
Regularly ordered polymer nanoparticle (PNP) assemblies incorporating gold nanoparticle (Au NP) clusters into the PNP interstices were fabricated by a simultaneous deposition of PNPs and Au NPs on a glass substrate. Monodisperse PNPs with an average size of 66 nm were employed as a template in the co-assembly to create the sub-100 nm periodic Au nanostructures on the substrate. First, mono-layering of PNP array with incorporation of 14 nm Au NPs was performed by a drop-casting to examine the number ratio of Au NPs to PNPs for multi-layering. Absorption spectra of the mono-layered co-assemblies of PNPs and Au NPs were employed to characterize the clustered state of Au NPs in the interstices of mono-layered PNPs. The number ratio suitable for homogeneous incorporation of Au NPs clustered in the interstice was found to be ranged from 6 to 8 in the characterization. Then, multi-layered co-assemblies of PNPs and clustered Au NPs were fabricated by a vertical deposition method with the Au NP number ratio of 8 to PNPs. Lifting rate of the substrate on which the PNPs were deposited was varied in the vertical deposition method to tune the film thickness of NP co-assembly. A decrease in the lifting rate to 1 μm/s could thicken the film to 0.71 μm corresponding to 13 layers of PNPs, resulting in the fabrication of periodic structures of Au NP clusters with a high packing density. Signal-to-noise ratio in the Raman measurement using p-mercaptobenzoic acid as a target molecule was successfully enhanced by multi-layering of the co-assembly, indicating that Au NP clusters were homogeneously incorporated into the interstices of PNPs in the co-assemblies.  相似文献   

12.
Assembling nanoparticles (NPs) into ordered architectures remains a challenge in the field of nanotechnology. Templated strategies have been widely utilized for NP assembly. As typical biological nanostructures, virus‐based NPs (VNPs) have shown great promise in templating NP assembly. Here it is illustrated that the VNP of simian virus 40 (SV40) is a powerful scaffold in directing the assembly of 3D hybrid nanoarchitectures with one NP encapsulated inside as a core and a cluster of gold NPs (AuNPs) on the outer surface of the SV40 VNP as a shell, in which the core NPs can be CdSe/ZnS quantum dots (QDs), Ag2S QDs, or AuNPs. The assembling of AuNPs onto the SV40 VNP surface is determined by the interactions between the AuNPs and the amine groups on the outer surface of SV40 VNPs. It is expected that the VNP guided 3D hybrid nanoarchitectures provide ideal models for NP interaction studies and open new opportunities for integrating various functionalities in NP assemblies.  相似文献   

13.
DNA‐mediated assembly of core–satellite structures composed of Zr(IV)‐based porphyrinic metal‐organic framework (MOF) and NaYF4,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported. MOF NPs generate singlet oxygen (1O2) upon photoirradiation with visible light without the need for additional small molecule, diffusional photosensitizers such as porphyrins. Using DNA as a templating agent, well‐defined MOF–UCNP clusters are produced where UCNPs are spatially organized around a centrally located MOF NP. Under NIR irradiation, visible light emitted from the UCNPs is absorbed by the core MOF NP to produce 1O2 at significantly greater amounts than what can be produced from simply mixing UCNPs and MOF NPs. The MOF–UCNP core–satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.  相似文献   

14.
Nanoparticle (NP) assemblies are of considerable interest for both fundamental research and applications, since they provide direct bridges between nanometer‐scale objects and the macroscale world. Unlike two‐dimensional or three‐dimensional NP assemblies, which have been extensively studied and reviewed, reports on one‐dimensional (1D) NP assemblies are rather rare, even though these assemblies are likely to play critical roles in the improvement of the efficiencies of various electronic, optoelectronic, magnetic, and other devices based on single NPs or their composites. Additionally, 1D assemblies of NPs, i.e., chains, can significantly help in the understanding of a number of biological processes and fundamental quantum mechanics of nanometer‐scale systems. The difficulties are very evident when one wants to realize anisotropic 1D assemblies from presumably isotropic, zero‐dimensional NPs. In this context, the authors present a systemic review of current research on 1D NP assemblies. Their preparation methods are classified and novel characteristics of NP chains, such as collective properties and directional transfer of photons, electrons, spins, etc., are elucidated. Current problems underlying the fundamental research and practical applications of 1D NP assemblies are also addressed.  相似文献   

15.
It is a significant challenge to achieve controllable self‐assembly of superstructures for biological applications in living cells. Here, a two‐layer core–satellite assembly is driven by a Y‐DNA, which is designed with three nucleotide chains that hybridized through complementary sequences. The two‐layer core–satellite nanostructure (C30S5S10 NS) is constructed using 30 nm gold nanoparticles (Au NPs) as the core, 5 nm Au NPs as the first satellite layer, and 10 nm Au NPs as the second satellite layer, resulting in a very strong circular dichroism (CD) and surface‐enhanced Raman scattering. After optimization, the yield is up to 85%, and produces a g‐factor of 0.16 × 10?2. The hybridization of the target microRNA (miRNA) with the molecular probe causes a significant drop in the CD and Raman signals, and this phenomenon is used to detect the miRNA in living cells. The CD signal has a good linear range of 0.011–20.94 amol ngRNA?1 and a limit of detection (LOD) of 0.0051 amol ngRNA?1, while Raman signal with the range of 0.052–34.98 amol ngRNA?1 and an LOD of 2.81 × 10?2 amol ngRNA?1. This innovative dual‐signal method can be used to quantify biomolecules in living cells, opening the way for ultrasensitive, highly accurate, and reliable diagnoses of clinical diseases.  相似文献   

16.
A novel catalyst functionalization method, based on protein‐encapsulated metallic nanoparticles (NPs) and their self‐assembly on polystyrene (PS) colloid templates, is used to form catalyst‐loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high‐temperature heat‐treatment during synthesis, which is attributed to the discrete self‐assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP‐loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (Rair/Rgas) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8‐ and 7.1‐fold improvements compared to that of dense WO3 NFs (Rair/Rgas = 6.1). Moreover, Pt NP‐loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well‐dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors.  相似文献   

17.
In this work, a phosphine‐based covalent organic framework (Phos‐COF‐1) is successfully synthesized and employed as a template for the confined growth of broad‐scope nanoparticles (NPs). Ascribed to the ordered distribution of phosphine coordination sites in the well‐defined pores, various stable and well‐dispersed ultrafine metal NPs including Pd, Pt, Au, and bimetallic PdAuNPs with narrow size distributions are successfully prepared as determined by transmission electron microscopy, X‐ray photoelectron spectroscopy, inductively coupled plasma, and powder X‐ray diffraction analyses. It is also demonstrated that the as‐prepared Phos‐COF‐1‐supported ultrafine NPs exhibit excellent catalytic activities and recyclability toward the Suzuki–Miyaura coupling reaction, reduction of nitro‐phenol and 1‐bromo‐4‐nitrobenzene, and even tandem coupling and reduction of p‐nitroiodobenzene. This work will open many new possibilities for preparing COF‐supported ultrafine NPs with good dispersity and stability for a broad range of applications.  相似文献   

18.
Common 2D cell cultures do not adequately represent the functions of 3D tissues that have extensive cell–cell and cell–matrix interactions, as well as markedly different diffusion/transport conditions. Hence, testing cytotoxicity in 2D cultures may not accurately reflect the actual toxicity of nanoparticles (NPs) and other nanostructures in the body. To obtain more adequate and detailed information about NP–tissue interactions, we here introduce a 3D‐spheroid‐culture‐based NP toxicology testing system. Hydrogel inverted colloidal crystal (ICC) scaffolds are used to create a physiologically relevant and standardized 3D liver tissue spheroid model for in vitro assay application. Toxicity of CdTe and Au NPs are tested in both 2D and 3D spheroid cultures. The results reveal that NP toxic effects are significantly reduced in the spheroid culture when compared to the 2D culture data. Tissue‐like morphology and phenotypic change are identified to be the major factors in diminishing toxicity. Acting as an intermediate stage bridging in vitro 2D and in vivo, our in vitro 3D cell‐culture model would extend current cellular level cytotoxicity to the tissue level, thereby improving the predictive power of in vitro NP toxicology.  相似文献   

19.
A well‐ordered two‐dimensional (2D) network consisting of two crossed Au silicide nanowire (NW) arrays is self‐organized on a Si(110)‐16 × 2 surface by the direct‐current heating of ≈1.5 monolayers of Au on the surface at 1100 K. Such a highly regular crossbar nanomesh exhibits both a perfect long‐range spatial order and a high integration density over a mesoscopic area, and these two self‐ordering crossed arrays of parallel‐aligned NWs have distinctly different sizes and conductivities. NWs are fabricated with widths and pitches as small as ≈2 and ≈5 nm, respectively. The difference in the conductivities of two crossed‐NW arrays opens up the possibility for their utilization in nanodevices of crossbar architecture. Scanning tunneling microscopy/spectroscopy studies show that the 2D self‐organization of this perfect Au silicide nanomesh can be achieved through two different directional electromigrations of Au silicide NWs along different orientations of two nonorthogonal 16 × 2 domains, which are driven by the electrical field of direct‐current heating. Prospects for this Au silicide nanomesh are also discussed.  相似文献   

20.
The aggregation of gold nanoparticles (Au NPs) in cell media is a common phenomenon that can influence NP‐cell interactions. Here, we control Au NP aggregation in cell media and study the impact of Au NP aggregation on human dermal fibroblast (HDF) cells. By first adding Au NPs to fetal bovine serum (FBS) and then subsequently to a buffer, aggregation can be avoided. Aggregation of Au NPs also can be avoided by coating Au NPs with other biomolecules such as lipids. The aggregation state of the Au NPs influences cellular toxicity and Au NP uptake: non‐aggregated cationic Au NPs are four‐fold less toxic to HDF cells than aggregated cationic Au NPs, and the uptake of non‐aggregated anionic citrate Au NPs is three orders of magnitude less than that of aggregated citrate Au NPs. Upon uptake of Au NPs, cellular F‐actin fiber formation is disrupted and actin dots are predominant. When lipid‐coated Au NPs are doped with a fluorescent lipid (F‐lipid) and incubated with HDF cells, the fluorescence from the F‐lipid was found throughout the cell, showing that lipids can dissociate from the Au NP surface upon entering the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号