首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results for three-dimensional (3D) winter and summer tidal flows in the homogeneous Arctic Ocean, obtained with the use of a modified version of the 3D finite-element hydrothermodynamic model QUODDY-4, are presented. It is shown that seasonal variability of the M2 tidal constants (amplitudes and phases of tidal sea surface level elevations) in the Central and Canadian parts of the Arctic Ocean is less than the error in the predicted tidal sea surface level elevations. This means that the seasonal variability can be neglected at least as a first approximation. A different situation is encountered in the Siberian continental shelf, where seasonal changes of tidal amplitude are ±5 cm, while those of tidal phase vary from 15° to several tens of degrees.  相似文献   

2.
The rapid and high bioaccumulation of mercury in marine mammals and its spatial and temporal variations have been a major puzzle in the Arctic. While extensive efforts have been focussed on the monitoring and chemistry of atmospheric mercury depletion events, a recent mass budget estimate of mercury in the Arctic suggests that we have overlooked the role of the ocean itself. Only through focussed studies on Hg dynamics in the Arctic Ocean under a changing climate are we going to understand what the risk of mercury is to those marine ecosystems and the people who rely on them.  相似文献   

3.
Understanding how rivers respond to changes in land cover, climate, and subsurface conditions is critical for sustainably managing water resources and ecosystems. In this study, long‐term hydrologic, climate, and satellite data (1973–2012) from the Upper Tahe River watershed (2359 km2) in the Da Hinggan Mountains of northeast China were analysed to quantify the relative hydrologic effects of climate variability (system input) and the combined influences of forest cover change and permafrost thaw (system characteristics) on average annual streamflow (system response) using 2 methods: the sensitivity‐based method and the Kendall–Theil robust line method. The study period was subdivided into a forest harvesting period (1973–1987), a forest stability period (1988–2001), and a forest recovery period (2002–2012). The results indicated that the combined effects of forest harvesting and permafrost thaw on streamflow (+ 47.0 mm) from the forest harvesting period to the forest stability period was approximately twice as large as the effect associated with climate variability (+20.2 mm). Similarly, from the forest stability period to the forest recovery period, the decrease in average annual streamflow attributed to the combined effects of forest recovery and permafrost thaw (?38.0 mm) was much greater than the decrease due to climate variability (?22.2 mm). A simple method was used to separate the distinct impacts of forest cover change and permafrost thaw, but distinguishing these influences is difficult due to changes in surface and subsurface hydrologic connectivity associated with permafrost thaw. The results highlight the need to consider multiple streamflow drivers in future watershed and aquatic ecosystem management. Due to the ecological and hydrological susceptibility to disturbances in the Da Hinggan Mountains, forest harvesting will likely negatively impact ecohydrological processes in this region, and the effects of forest species transition in the forest recovery process should be further investigated.  相似文献   

4.
《水文科学杂志》2013,58(3):538-549
Abstract

Trend analysis was performed on streamflow data for a collection of stations on the Canadian Prairies, in terms of spring and summer runoff volumes, peak flow rates and peak flow occurrences, as well as an annual volume measure, for analysis periods of 1966–2005, 1971–2005, and 1976–2005. The Mann-Kendall statistical test for trend and bootstrap resampling were used to identify the trends and to determine the field significance of the trends. Partial correlation analysis was used to identify relationships between hydrological variables that exhibit a significant trend and meteorological variables that exhibit a significant trend. Noteworthy results include decreasing trends in the spring snowmelt runoff event volume and peak flow, decreasing trends (earlier occurrence) in the spring snowmelt runoff event peak date and decreasing trends in the seasonal (1 March–31 October) runoff volume. These trends can be attributed to a combination of reductions in snowfall and increases in temperatures during the winter months.  相似文献   

5.
揋reenhouse effect?causing global warming has been an important issue of studying climate change. In the latest 100 years, the earth surface temperature has been increased by about 0.4℃—0.8℃[1,2]. And this has been becoming a hotspot of the world[3,4]  相似文献   

6.
The Arctic Ocean, the northernmost parts of the earth, covers the total surface area of 14.79 million square kilometers and amounts to only about 4% of global ocean surface area. Although its surface area is the smallest in the four major oceans, the Arct…  相似文献   

7.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

8.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A new seasonal and annual dataset describing Arctic sea ice extents for 1901–2015 was constructed by individually re-calibrating sea ice data sources from the three Arctic regions (North American, Nordic and Siberian) using the corresponding surface air temperature trends for the pre-satellite era (1901–1978), so that the strong relationship between seasonal sea ice extent and surface air temperature observed for the satellite era (1979-present) also applies to the pre-satellite era. According to this new dataset, the recent period of Arctic sea ice retreat since the 1970s followed a period of sea ice growth after the mid-1940s, which in turn followed a period of sea ice retreat after the 1910s. Arctic sea ice is a key component of the Arctic hydrological cycle, through both its freshwater storage role and its influence on oceanic and atmospheric circulation. Therefore, these new insights have significance for our understanding of Arctic hydrology.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

10.
Changes in water temperature can have important consequences for aquatic ecosystems, with some species being sensitive even to small shifts in temperature during some or all of their life cycle. While many studies report increasing regional and global air temperatures, evidence of changes in river water temperature has, thus far, been site specific and often from sites heavily influenced by human activities that themselves could lead to warming. Here we present a tiered assessment of changing river water temperature covering England and Wales with data from 2773 locations. We use novel statistical approaches to detect trends in irregularly sampled spot measurements taken between 1990 and 2006. During this 17‐year period, on average, mean water temperature increased by 0.03 °C per year (±0.002 °C), and positive changes in water temperature were observed at 2385 (86%) sites. Examination of catchments where there has been limited human influence on hydrological response shows that changes in river flow have had little influence on these water temperature trends. In the absence of other systematic influences on water temperature, it is inferred that anthropogenically driven climate change is driving some of this trend in water temperature. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

11.
The effect of climate change on water resources has been an area of continued research, especially in Australia. Previous studies have suggested significant trends in rainfall, and these are amplified causing larger changes in streamflow. However, most of the previous analysis was based on annual time scales or modelled data and did not account for changes in land cover, which could interact with changes in climate. Climate data and streamflow data between 1970 and 2010 from 13 mostly forested small catchments (<250 km2) in Australia were analysed for trends. Non-parametric Mann-Kendall trend analysis, generalized additive mixed modelling and rainfall-runoff modelling were combined for the analysis. This indicates consistent increases in maximum temperature and varied decreases in rainfall. The streamflow in the studied catchments indicated small decreases in streamflow, which amplified observed trends in the rainfall. In general, overall decreases are much smaller than suggested in earlier research.  相似文献   

12.
It is of major scientific interests to determine the parameters of momentum, heat and vapor exchange in the planetary boundary layer in order to study the effects of ocean-ice-atmosphere interactions and their feedback mechanisms on global climate[1]. Lin…  相似文献   

13.
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Sea ice, as an important component of the Arctic climate system, has drawn significant sci-entific interest. Sea ice thickness and its morphology have dramatic impacts on ocean-atmos- phere-ice interactions[1—4], which directly affect the exchange proces…  相似文献   

15.
The Arctic has experienced substantial warming during the past century with models projecting continued warming accompanied by increases in summer precipitation for most regions. A key impact of increasing air surface temperatures is the deepening of the active layer, which is expected to alter hydrological processes and pathways. The aim of this study was to determine how one of the warmest and wettest summers in the past decade at a High Arctic watershed impacted water infiltration and storage in deeply thawed soil and solute concentrations in stream runoff during the thaw period. In June and July 2012 at the Cape Bounty Watershed Observatory, we combined active layer measurements with major ion concentrations and stable isotopes in surface waters to characterize the movement of different runoff sources: snowmelt, rainfall, and soil water. Results indicate that deep ground thaw enhanced the storage of infiltrated water following rainfall. Soil water from infiltrated rainfall flowed through the thawed transient layer and upper permafrost, which likely solubilized ions previously stored at depth. Subsequent rainfall events acted as a hydrological flushing mechanism, mobilizing solutes from the subsurface to the surface. This solute flushing substantially increased ion concentrations in stream runoff throughout mid to late July. Results further suggest the importance of rainfall and soil water as sources of runoff in a High Arctic catchment during mid to late summer as infiltrated snowmelt is drained from soil following baseflow. Although there was some evaporation of surface water, our study indicates that flushing from solute stores in the transient layer was the primary driver of increased ion concentrations in stream runoff and not evaporative concentration of surface water. With warmer and wetter summers projected for the Arctic, ion concentrations in runoff (especially in the late thaw season), will likely increase due to the deep storage and subsurface flow of infiltrated water and subsequent flushing of previously frozen solutes to the surface.  相似文献   

16.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   

17.
Radium-226 (226Ra) activities were measured in the surface water samples collected from the Arctic Ocean and the Bering Sea during the First Chinese National Arctic Research Expedition. The results showed that 226Ra concentrations in the surface water ranged from 0.28 to 1.56 Bq/m3 with an average of 0.76 Bq/m3 in the Arctic Ocean, and from 0.25 to 1.26 Bq/m3 with an average of 0.71 Bq/m3 in the Bering Sea. The values were obviously lower than those from open oceans in middle and low latitudes, indicating that the study area may be partly influenced by sea ice meltwater. In the Bering Sea, 226Ra in the surface water decreased northward, probably as a result of the exchange between the 226Ra-deficient sea ice meltwater and the 226Ra-rich Pacific water. In the Arctic Ocean, 226Ra in the surface water increased northward and eastward. This spatial distribution of 226Ra reflected the variation of the 226Ra-enriched river component in the water mass of the Arctic Ocean. The vertical profiles of 226Ra in the Canadian Basin showed a concentration maximum at 200 m, which could be attributed to the inputs of the Pacific water or/and the bottom shelf water with high 226Ra concentration. This conclusion was consistent with the results from 2H, 18O tracers.  相似文献   

18.
Climate change is one of the main drivers of river warming worldwide. However, the response of river temperature to climate change differs with the hydrology and landscape properties, making it difficult to generalize the strength and the direction, of river temperature trends across large spatial scales and various river types. Additionally, there is a lack of long‐term and large‐scale trend studies in Europe as well as globally. In this study, we investigated the long‐term (25 years; 132 sites) and the short‐term (10 years; 475 sites) river temperature trends, patterns and underlying drivers within the period 1985–2010 in seven river basins of Germany. The majority of the sites underwent significant river warming during 1985–2010 (mean warming trend: 0.03 °C year?1, SE = 0.003), with a faster warming observed during individual decades (1985–1995 and 2000–2010) within this period. Seasonal analyses showed that, while rivers warmed in all seasons, the fastest warming had occurred during summer. Among all the considered hydro‐climatological variables, air temperature change, which is a response to climate forcing, was the main driver of river temperature change because it had the strongest correlation with river temperature, irrespective of the period. Hydrological variables, such as average flow and baseflow, had a considerable influence on river temperature variability rather than on the overall trend direction. However, decreasing flow probably assisted in a faster river temperature increase in summer and in rivers in NE basins (such as the Elbe basin). The North Atlantic Oscillation Index had a greater significant influence on the winter river temperature variability than on the overall variability. Landscape and basin variables, such as altitude, ecoregion and catchment area, induced spatially variable river temperature trends via affecting the thermal sensitivity of rivers, with the rivers in large catchments and in lowland areas being most sensitive. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The trends of annual, seasonal and monthly precipitation in southern China (Guangdong Province) for the period 1956–2000 are investigated, based on the data from 186 high-quality gauging stations. Statistical tests, including Mann-Kendall rank test and wavelet analysis, are employed to determine whether the precipitation series exhibit any regular trend and periodicity. The results indicate that the annual precipitation has a slightly decreasing trend in central Guangdong and slight increasing trends in the eastern and western areas of the province. However, all the annual trends are not statistically significant at the 95% confidence level. The average precipitation increases in the dry season in central Guangdong, but decreases in the wet season, meaning that the precipitation becomes more evenly distributed within the year. Furthermore, the analysis of monthly precipitation suggests that the distribution of intra-annual precipitation changes over time. The results of wavelet analysis show prominent precipitation with periods ranging from 10 to 12 years in every sub-region in Guangdong Province. Comparing with the sunspot cycle (11-year), the annual precipitation in every sub-region in Guangdong province correlates with Sunspot Number with a 3-year lag. The findings in this paper will be useful for water resources management.

Editor Z.W. Kundzewicz; Associate editor Sheng Yue

Citation Dedi Liu, Shenglian Guo, Xiaohong Chen and Quanxi Shao, 2012. Analysis of trends of annual and seasonal precipitation from 1956 to 2000 in Guangdong Province, China. Hydrological Sciences Journal, 57 (2), 358–369.  相似文献   

20.
The ongoing regression of sea ice cover is expected to significantly affect the fate of organic carbon over the Arctic continental shelves. Long-term moored sediment traps were deployed in 2005–2006 in the Beaufort Sea, Northern Baffin Bay and the Laptev Sea to compare the annual variability of POC fluxes and to evaluate the factors regulating the annual cycle of carbon export over these continental shelves. Annual POC fluxes at 200 m ranged from 1.6 to 5.9 g C m−2 yr−1 with the highest export in Northern Baffin Bay and the lowest export over the Mackenzie Shelf in the Beaufort Sea. Each annual cycle exhibited an increase in POC export a few weeks before, during, or immediately following sea ice melt, but showed different patterns over the remainder of the cycle. Enhanced primary production, discharge of the Lena River, and resuspension events contributed to periods of elevated POC export over the Laptev Sea slope. High POC fluxes in Northern Baffin Bay reflected periods of elevated primary production in the North Water polynya. In the Beaufort Sea sediment resuspension contributed to most of the large export events. Our results suggest that the outer shelf of the Laptev Sea will likely sustain the largest increase in POC export in the next few years due to the large reduction in ice cover and the possible increase in the Lena River discharge. The large differences in forcing among the regions investigated reinforce the importance of monitoring POC fluxes in the different oceanographic regimes that characterize the Arctic shelves to assess the response of the Arctic Ocean carbon cycle to interannual variability and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号