首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Superhydrophobic polycaprolactone (PCL) membranes with hierarchical structure were fabricated via alternate electrospinning/electrospraying techniques. Electrospun PCL/methyl silicone oil (PCL/MSO) nanofibers were employed as substrate. PCL/MSO‐PCL microspheres (PCL/MSO‐PCLMS) hierarchical membrane was prepared via electrosprayed PCLMS as an additional layer on the substrate. Field emission scanning electron microscopy images showed the formation of hierarchical PCL/MSO‐PCLMS membranes. Compared to pure PCL fibers substrate (120 ± 1.3°), the water contact angle (WCA) of MSO‐modified PCL membrane was 142 ± 0.7°. The most interesting observation was that the WCA of PCLMS without any modification could be achieved to 146 ± 2.8°. On this basis, PCL/MSO‐PCLMS hierarchical membrane possessed superhydrophobic surface with 150 ± 0.6° of WCA. The excellent surface roughness and air‐pocket capacity of hierarchical membranes would make the membranes more hydrophobic. The maximum oil (n‐hexane) adsorption capacity of PCL/MSO‐PCLMS membrane was 32.53 g g?1. Oil–water separation efficiencies of the superhydrophobic membranes were all higher than 99.93% after 10 cycles. The hierarchically structured PCL superhydrophobic membranes indicate the potential applications of environmentally friendly biopolymers as separation membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 421–430  相似文献   

2.
We report here a simple strategy for fabricating asymmetrically superhydrophobic cotton fabric via a mist copolymerization of three monomers, 2,2,2‐trifluoroethyl methacrylate (TFMA), 2‐isocyanatoethyl methacrylate (IEM), and divinylbenzene (DVB). The copolymer layer on the cotton surface was confirmed by X‐ray photoelectron spectroscopy (XPS) analysis and attenuated total reflection (ATR) accessory, and the nanoscale hierarchical structures in the polymeric layer were demonstrated by observation of field emission scanning electron microscope (FE‐SEM). Surface characterization reveals that the modified surface is superhydrophobic, but the opposite side of the modified cotton fabric has the hydrophilic nature of cotton. More experimental data suggest that the good water adsorptivity and vapor transmissibility of the original cotton fabric were inherited after the surface modification. These properties are of great significance in textile and medical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1862–1871  相似文献   

3.
To obtain an effective compatibilizer for the blends of poly(L‐lactide) (PLLA) and poly(ε‐caprolactone) (PCL), the diblock copolymers PCL‐b‐PLLA with different ratios of PCL/PLLA (CL/LA) and different molecular weights (Mn) were synthesized by ring‐opening polymerization (ROP) of L‐lactide with monohydric poly(ε‐caprolactone) (PCL‐OH) as a macro‐initiator. These copolymers were melt blended with PLLA/PCL (80/20) blend at contents between 3.0 and 20 phr (parts per hundred resin), and the effects of added PCL‐b‐PLLA on the mechanical, morphological, rheological, and thermodynamic properties of the PLLA/PCL/PCL‐b‐PLLA blends were investigated. The compatibility between PLLA matrix and PCL phase was enhanced with decreasing in CL/LA ratios or increasing in Mn for the added PCL‐b‐PLLA. Moreover, the crystallinity of PLLA matrix increased because of the added compatibilizers. The PCL‐b‐PLLA with the ratio of CL/LA (50/50) and Mn ≥ 39.0 kg/mol were effective compatibilizers for PLLA/PCL blends. When the content of PCL‐b‐PLLA is greater than or equal to 5 phr, the elongations at break of the PLLA/PCL/PCL‐b‐PLLA blends all reached approximately 180%, about 25 times more than the pristine PLLA/PCL(80/20) blend.  相似文献   

4.
The super hydrophobic, self‐cleaning properties of natural species derive from the fine hierarchical topography evolved on their surfaces. Hierarchical architectures which are function‐mimetic of the lotus leaf are here described and created from multi‐scale hierarchical assembled templates. The first level of hierarchy was a micromachined dome structure template and the second level of hierarchy was added by layering a thin nanoporous membrane such as porous anodized alumina or an ion track etch membrane. The assembled templates were nanoimprinted by a single step process on thermoplastic films. The wetting angle of the surfaces reached a value of 160° and the self‐cleaning behavior was observed. The superhydrophobic behavior remained over 1 year after fabrication, which demonstrates the stability of these polymeric self‐cleaning topographies. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B. Polym. Phys. 2014 , 52, 603–609  相似文献   

5.
A graft-polymerization process with atomized lauryl methacrylate as monomer is used to fabricate fluorine-less and asymmetrically superhydrophobic cotton fabrics. The polymers synthesized in the process can form nanoscale hierarchical structures on the cotton surface, and the surface morphology can be controlled by choosing a suitable solvent or by varying the feeding quantity of the monomer mist stream. After applying the surface modification to cotton fabrics, an asymmetrically superhydrophobic surface is achieved without any additional nanosized particles, and the solvent damages on the cotton fabrics are controllable at a very low level. Surface characterization reveals that the modified side of the cotton fabric has laundering-durable and mechanically stable superhydrophobicity with a water contact angle of more than 150°, whereas the opposite inherits the hydrophilic property of pristine cotton fabric. The modified cotton fabrics are found to have medium-level water-absorbing ability between pristine cotton and PET fabrics, as well as good vapor transmissibility similar to pristine cotton fabric. These properties are of great significance in textile and medical applications.  相似文献   

6.
In this study, titanium tetra‐isopropoxide was used as a precursor of TiO2 for in situ coating on cotton fabric by sol–gel method. Subsequently, silver nitrate was used as doping agent to prepare silver‐doped TiO2‐coated cotton fabric during hydrothermal treatment. The treated samples were characterized through field‐emission scanning electron microscopy, energy‐dispersive X‐ray analysis, inductively coupled plasma‐mass spectroscopy and UV–visible absorption spectroscopy to study morphology, composition of deposited elements and light absorption behavior of treated samples. X‐ray photoelectron spectroscopy was carried out to analyze the electronic state of silver in TiO2‐coated fabric after hydrothermal treatment. Doping of silver on TiO2‐coated fabric and subsequent hydrothermal treatment was found to enhance dye decolorization rate of rhodamine B dye solution in both UV and visible light radiations with respect to undoped TiO2. The study shows that an optimal level of silver‐doped TiO2‐coated fabric can be used repeatedly for dye decolorization without significant loss in its photocatalytic activity. The self‐cleaning properties of samples were also studied using methylene blue as a staining agent. It was observed that the presence of 1.8% silver on the weight of titanium in doped samples provides almost 82% of stain degradation.  相似文献   

7.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Thermo‐responsive block‐graft fluoropolymer is synthesized and investigated the self‐assembly morphology and the tunable wettability surface on cotton fabric by dip‐coating into the micelles with different temperatures. Well‐defined block‐graft copolymer is prepared by click chemistry with poly(hexafluorobutyl methacrylate)‐block‐poly(glycidyl methacrylate) (PHFBMA‐b‐PGMA) and homopolymer poly(N‐isopropylacrylate) with alkyne on main chain (Alkynyl‐PNIPAM) to synthesize final block‐graft polymer PHFBMA‐b‐(PGMA‐g‐PNIPAM). The thermo‐responsive behaviors of block‐graft polymer prove that the diameter for fluoropolymer micelle is about 50–70 nm with uniform sphere shape at room temperature and bigger and broader at 40 °C. The surface of cotton fabric processed in micelle solution at room temperature is smooth and has good hydrophobic property, while it has the hydrophilic property dipped in high temperature micelle solution. This work may give valuable guidance for fabricating a facile strategy to establish controllable wettability surfaces on different substrates, which is a promising candidate for the coating materials and industrial fields. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 992–1002  相似文献   

9.
Polyelectrolytes multilayer (PEM) films based on fully biobased polysaccharides, chitosan and phosphorylated cellulose (PCL) were deposited on the surface of cotton fabric by the layer-by-layer assembly method. Altering the concentration of PCL could modify the final loading on the surface of cotton fabrics. A higher PCL concentration (2 wt%) could result in more loading. Attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis directly showed that chitosan and PCL were successfully deposited onto the surface of cotton fabric. In the vertical flame test, the cotton fabric with 20 bilayers at the higher PCL concentration (2 wt%) could extinguish the flame. Microcombustion calorimetry results showed that all coated cotton fabrics reduced the peak heat release rate (HRR) and total heat release (THR) relative to the pure one, especially for (CH0.5/PCL2)20, which showed the greatest reduction in peak HRR and THR. Thermogravimetric analysis results showed that the char residue at temperatures ranging from 400 to 700 °C was enhanced compared to that in the pure cotton fabric, especially in the case of higher PCL concentration (2 wt%). The work first provided a PEM film based on fully biobased polysaccharide, chitosan and PCL on cotton fabric to enhance its flame retardancy and thermal stability via the layer-by-layer assembly method.  相似文献   

10.
A superhydrophobic cotton textile with high antibacterial properties has been fabricated. The cotton textile was coated through the in situ growth of ZnO‐SiO2 nanoparticles in presence of chitosan as the template agent via a hydrothermal process at 95 °C. This process was followed by the coating of additional layers of hexadecyltrimethoxysilane (HDTMS). The obtained cotton textile showed antibacterial property against Staphylococcus epidermis and Escherichia coli with inhibition zones up to 18.26 and 8.48 mm, respectively. Scanning electron microscopy (SEM) revealed that the coating had a rough surface, which was attributed to the distribution of ZnO‐SiO2 nanorods of hexagonal shape. This rough surface creates a superhydrophobic layer that repels the bacteria, as proven by the large water contact angle of approximately 150°. Nevertheless, the HDTMS layers prolong the durability of hydrophobicity for up to 3 h.  相似文献   

11.
A simple and versatile method based on cotton cellulose coated with graphene is reported for the fabrication of superhydrophobic and electroconductive textiles. Graphene oxide was deposited on cotton fibers by a dip-pad-dry method followed by reduction with ascorbic acid to yield a fabric with a layer of graphene. The fabric was then reacted with methyltrichlorosilane to form polymethylsiloxane (PMS) nanofilaments on the fibers surface. The surface chemistry and morphology were characterized by UV–visible reflectance spectrophotometry, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy. The water contact angle (CA)/shedding angle (SHA) and resistivity measurements were used for assessing hydrophobicity and conductivity, respectively. The graphene-coated fabric showed hydrophobicity with the CA of 143.2° ± 2.9° and SHA of 41°. The formation of PMS nanofilaments displayed superhydrophobicity with CA of 163° ± 3.4° and SHA of 7°, which indicated the self-cleaning ability. Conductivity of the graphene-coated fabric was confirmed by the electrical resistivity of 91.8 kΩ/sq which increased to 112.5 kΩ/sq after the formation of PMS nanofilaments.  相似文献   

12.
Exploiting a superhydrophobic surface is very significant due to its excellent water repellency which has many practical applications in various fields. In this work, the cobalt incorporated amorphous carbon‐based (Co/a‐C:H) film was prepared successfully on Si substrate via a simple 1‐step electrochemical deposition where electrochemical deposition technology was using cobalt (II) acetylacetonate methanol solution as electrolyte under high voltage, atmospheric pressure, and low temperature. Surprisingly, the as‐prepared film showed a superior superhydrophobic surface with a water contact angle of 153 ± 1° and a sliding angle of 7.6° without any further modification of low surface energy materials. Especially, the tape adhesive, corrosion resistance, and self‐cleaning tests demonstrated that the as‐prepared carbon‐based film could possess fairly well adhesion, superior anti‐corrosion resistance, and self‐cleaning ability, respectively. It indicated that the superhydrophobic Co/a‐C:H film might have potential promising applications in the field of anti‐fouling, anti‐corrosion, and drag resistance, such as the above‐deck structures on icebreaker vessels, ship hulls, and offshore wind turbine blades.  相似文献   

13.
A cotton fabric was coated with a polymer that contains both poly(dimethyl siloxane) (PDMS) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA). When the repeat unit number of PDMS is about three‐fold that of PDMAEMA and the fabric is exposed to air, the fabric is superhydrophobic because PDMS in the coating covers the PDMAEMA chains. Upon contact with an oil‐in‐water emulsion, the water‐soluble PDMAEMA rises to the top and the side in contact with the emulsion becomes hydrophilic. The emerged PDMAEMA chains then cause the emulsion droplets to coagulate, and the aggregated oil fills the pores on the superhydrophobic side of the fabric. The oil‐impregnated side remains hydrophobic even upon prolonged contact with water. Thus, a Janus fabric is elegantly generated in situ and sustained. This easy‐to‐prepare Janus fabric rapidly and efficiently separates oil from emulsions and may find practical applications.  相似文献   

14.
将氢氧化镁(Mg(OH)2)凝胶沉积到棉纤维上,以提高棉纤维表面粗糙度和阻燃性能,随后将含有Mg(OH)2的棉纤维浸渍到聚二甲基硅氧烷(PDMS)溶液,获得阻燃超疏水棉织物。 并对棉纤维进行了傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、疏水性、热稳定性、阻燃性能和耐久性测试。 结果表明,Mg(OH)2负载到织物上,使得织物表面具有一定的微/纳米结构,形成了粗糙涂层。 当Mg(OH)2浓度为1.0 mol/L时,Mg(OH)2/PDMS改性的织物接触角(CA)可达158°,极限氧指数(LOI)提升至24.5%,导热系数为0.0525 W/(m·K), 具有超疏水和阻燃性能。 整理后织物经过20次洗涤,100次磨擦,极端条件处理后,CA仍大于150°,LOI值高于23%,显示了较好的耐久性。  相似文献   

15.
A novel amphiphilic branch‐ring‐branch tadpole‐shaped [linear‐poly(ε‐caprolactone)]‐b‐[cyclic‐poly(ethylene oxide)]‐b‐[linear‐poly(ε‐caprolactone)] [(l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL)] was synthesized by combination of glaser coupling reaction with ring‐opening polymerization (ROP) mechanism. The self‐assembling behaviors of (l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL) and their π‐shaped analogs of poly(ε‐caprolactone)/poly(ethylene oxide)]‐b‐poly(ethylene oxide)‐b‐[poly(ε‐caprolactone)/poly(ethylene oxide) with comparable molecular weight in water were preliminarily investigated. The results showed that the micelles formed from the former took a fiber look, however, that formed from the latter took a spherical look. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Azide‐alkyne and Diels–Alder click reactions together with a click‐like nitroxide radical coupling reaction were used in a one‐pot fashion to generate tetrablock quaterpolymer. The various living polymerization generated linear polymers with orthogonal end‐functionalities, maleimide‐terminated poly(ethylene glycol) (PEG‐MI), anthracene‐ and azide‐terminated polystyrene, alkyne‐ and bromide‐terminated poly(tert‐butyl acrylate) or alkyne‐poly(n‐butyl acrylate), and tetramethylpiperidine‐1‐oxyl (TEMPO)‐terminated poly(ε‐caprolactone) (PCL‐TEMPO) were clicked together in a one‐pot fashion to generate PEG‐b‐PS‐b‐PtBA‐b‐PCL or PEG‐b‐PS‐b‐PnBA‐b‐PCL quaterpolymer using Cu(0), CuBr, and N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst in dimethyl formamide at 80 °C for 36 h. Linear precursors and target quaterpolymers were analyzed via 1H NMR and gel permeation chromatography. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A series of thermosensitive ABA type triblock poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(ε‐caprolactone) (PCL‐PNIPAAm‐PCL) copolymers with different molecular weights were synthesized by the combination of ring opening polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The critical micelle concentrations (CMCs) of the resulted four triblock copolymers in aqueous solution were determined to be 33.8, 39.8, 35.5, and 41.7 mg/L, respectively, by fluorescence spectroscopy using pyrene as a fluorescence probe. Optical absorption measurements showed that the lower critical solution temperatures (LCSTs) of the copolymers were 35.8, 36.2, 35.2, and 36.2 °C, respectively, in distilled water, and 33.9, 34.2, 33.3, 34.6 °C, respectively, in PBS (pH = 6.8, I = 0.1). Transmission electron microscopy (TEM) showed that the self‐assembled micelles exhibited a well‐defined spherical shape with diameter of around 100 nm. The drug‐loaded PCL‐PNIPAAm‐PCL micelles displayed thermosensitive controlled release behaviors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3048–3057, 2008  相似文献   

18.
Biodegradable polymers provide an attractive solution to reduce environmental pollution caused by the accumulation of plastic waste in landfills. In this study, the effect of polyethylene‐graft‐glycidyl methacrylate (PE‐g‐GMA) on the biodegradation of blends of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA) (80/20, 60/40, 40/60, and 20/80 PCL/CA, w/w) was assessed by mass retention, tensile strength, and morphological properties. The principal fungal strains present in the soil after biodegradation were also identified. PCL and the blends containing 60% and 80% PCL showed greater mass loss and superficial change in simulated soil. PE‐g‐GMA increased the tensile strength retention during 3 months of aging in simulated soil. Scanning electron microscopy (SEM) indicated that pure PCL was more porous, which enhanced the hydrolysis and biodegradation of PCL. PE‐g‐GMA decreased the mass loss of the polymers, possibly by enhancing the interaction between PCL and CA, with the formation of hydrogen bonds between the carbonyl groups of PCL and the hydroxyl groups of CA. This effect was marked in blends with >40% PCL. Microbiological analysis revealed the presence of several species of fungi in the soil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Enzymatic degradation and polymerization using an enzyme were analyzed with respect to the establishment of a sustainable chemical recycling system for poly(ε‐caprolactone) (PCL) which is a typical biodegradable synthetic plastic. As the typical example, the enzymatic degradation of PCL having an Mn of 110 000 using lipase CA in toluene containing water at 70°C for 6 h afforded a unimodal oligomer having an Mn of about 1 000 quantitatively consisting of linear and cyclic oligomers. This was again polymerized by lipase CA in toluene under restricted water concentration to produce PCL having an Mn of greater than 70 000.  相似文献   

20.
Novel and well‐defined amphiphilic H‐shaped terpolymers poly(L‐lactide)‐block‐(poly(2‐(N,N‐dimethylamino)ethyl methacrylate) ‐block‐)poly(ε‐caprolactone)(‐block‐poly(2‐(N,N‐dimethylamino)ethyl methacrylate)) ‐b‐poly(L‐lactide) (PLLA‐b‐(PDMAEMA‐b‐)PCL(‐b‐PDMAEMA)‐b‐PLLA) were synthesized by the combination of ring‐opening polymerization, atom transfer radical polymerization, and click chemistry. The H‐shaped amphiphilic terpolymers can self‐assemble into spherical nano‐micelles in water. Because of the dually responsive (temperature and pH) properties of PDMAEMA segments, the hydrodynamic radius of the micelles of the H‐shaped terpolymer solution can be adjusted by altering the environmental temperature or pH values. The thermal properties investigation and the crystalline morphology analysis indicate that the branched structure of the H‐shaped terpolymers and the presence of amorphous PDMAEMA segments together led to the obvious decrease of PCL segments and the complete destruction of crystallinity of the PLLA segments in the H‐shaped terpolymers. In addition, the H‐shaped terpolymer film has better hydrophilicity than linear PCL or triblock polymer of PLLA‐b‐(N3? )PCL(? N3)‐b‐PLLA, due to the decrease or destruction of the crystallizability of the PCL or PLLA in the H‐shaped terpolymer and the presence of hydrophilic PDMAEMA segments. These unique H‐shaped amphiphilic terpolymers composed of biodegradable and biocompatible PCL and PLLA components and intelligent and biocompatible PDMAEMA component will have the potential applications in biomedical fields. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号