首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated dihydridocarbonyltris(triphenylphosphine)ruthenium catalyzes the cyclodimerization of both bis(2‐thienyl)acetylene and bis(3‐thienyl)acetylene to yield, respectively, 4,5,6‐tris(2′‐thienyl)‐benzo[b]thiophene and 5,6,7‐tris(3′‐thienyl)benzo[b]thiophene. These fluoresce in the blue. Both undergo irreversible one electron oxidation at & sim1.1 mV versus Ag/Ag+ electrode, consistent with oxidation of the benzo[b]thiophene nuclei rather than the substituent thiophene rings.  相似文献   

2.
A useful and rapid access to libraries of N‐arylbenzo[b]furo[3,2‐d]pyrimidin‐4‐amines ( 1 ) and their novel benzo[b]thieno[3,2‐d]pyrimidin‐4‐amine analogues ( 2 ) was investigated for the first time. Title compounds were obtained via microwave‐accelerated condensation and Dimroth rearrangement of suitable anilines with N′‐(2‐cyanaryl)‐N,N‐dimethylformimidamides obtained by reaction of benzo[b]furane and benzo[b]thiophene precursors with N,N‐dimethylformamide dimethyl acetal. This work also demonstrates that well‐controlled parameters offer comfortable use of microwave technology and are both safe and beneficial to the environment. Some products obtained in this article exhibit interesting in vitro antiproliferative effects.  相似文献   

3.
The first comprehensive study of the synthesis and structure–property relationships of 2,2′‐bis(benzo[b]phosphole)s and 2,2′‐benzo[b]phosphole–benzo[b]heterole hybrid π systems is reported. 2‐Bromobenzo[b]phosphole P‐oxide underwent copper‐assisted homocoupling (Ullmann coupling) and palladium‐catalyzed cross‐coupling (Stille coupling) to give new classes of benzo[b]phosphole derivatives. The benzo[b]phosphole–benzo[b]thiophene and ‐indole derivatives were further converted to P,X‐bridged terphenylenes (X=S, N) by a palladium‐catalyzed oxidative cycloaddition reaction with 4‐octyne through the Cβ? H activation. X‐ray analyses of three compounds showed that the benzo[b]phosphole‐benzo[b]heterole derivatives have coplanar π planes as a result of the effective conjugation through inter‐ring C? C bonds. The π–π* transition energies and redox potentials of the cis and trans isomers of bis(benzo[b]phosphole) P‐oxide are very close to each other, suggesting that their optical and electrochemical properties are little affected by the relative stereochemistry at the two phosphorus atoms. The optical properties of the benzo[b]phosphole–benzo[b]heterole hybrids are highly dependent on the benzo[b]heterole subunits. Steady‐state UV/Vis absorption/fluorescence spectroscopy, fluorescence lifetime measurements, and theoretical calculations of the non‐fused and acetylene‐fused benzo[b]phosphole–benzo[b]heterole π systems revealed that their emissive excited states consist of two different conformers in rapid equilibrium.  相似文献   

4.
Photocyclization of 3‐chloro‐N‐(9‐phenanthryl)benzo[b]‐thiophene‐2‐carboxamide ( 3 ) and 3‐chloro‐N‐(9‐phenanthryl)‐naphtho[1,2‐b]thiophene‐2‐carboxamide ( 10 ) yielded dibenzo[f,h]benzothieno[2,3‐c]‐quinolin‐10(9H)‐one ( 4 ) and dibenzo[f,h]naphtho[2′,1′:4,5]thieno[2,3‐c]quinolin‐10(9H)‐one ( 11 ), respectively. Further elaboration of the lactams provided three novel unsubstituted new ring systems.  相似文献   

5.
The present study describes the synthesis of phenanthro[3,4‐b]thiophene (3) , phenanthro[4,3‐b]thiophene (4) and its potential dihydrodiol metabolites, trans‐6,7‐dihydroxy‐6,7‐dihydrophenanthro[3,4‐b]thiophene (5) and trans‐8,9‐dihydroxy‐8,9‐dihydrophenanthro[3,4‐b]thiophene (6) , trans–6,7‐dihydroxy‐6,7‐dihydro‐phenanthro[4,3‐b]thiophene (7) and trans‐8,9‐dihydroxy‐8,9‐dihydrophenanthro[4,3‐b]thiophene (8) from Suzuki coupled intermediates. The UV spectra of these dihydrodiols are presented. These spectra are useful tools for identifying these dihydrodiols among unknown metabolites of 1 and 2 produced in vitro or in vivo.  相似文献   

6.
The title compounds, C20H17NO3S, (I), and C19H15NO2S, (II), were prepared by the reaction of benzo[b]thiophene‐2‐carbaldehyde with (3,4,5‐trimethoxyphenyl)acetonitrile and (3,4‐dimethoxyphenyl)acetonitrile, respectively, in the presence of methanolic potassium hydroxide. In (I), the C=C bond linking the benzo[b]thiophene and the 3,4,5‐trimethoxyphenyl units has E geometry, with dihedral angles between the plane of the bridging unit and the planes of the two adjacent ring systems of 5.2 (3) and 13.1 (2)°, respectively. However, in (II), the C=C bond has Z geometry, with dihedral angles between the plane of the bridging unit and the planes of the adjacent benzo[b]thiophene and 3,4‐dimethoxyphenyl units of 4.84 (17) and 76.09 (7)°, respectively. There are no significant intermolecular hydrogen‐bonding interactions in the packing of (I) and (II). The packing is essentially stabilized via van der Waals forces.  相似文献   

7.
A new series of benzo[g]thiazolo[2,3‐b]quinazolin‐4‐ium and benzo[g]benzo[4,5]thiazolo[2,3‐b]quinazolin‐14‐ium hydroxide derivatives have been synthesized by the one‐pot, three‐component reaction of aryl glyoxal monohydrates, 2‐hydroxy‐1,4‐naphthoquinone, and 2‐aminothiazole or 2‐aminobenzothiazole in the presence of triethylamine and p‐toluenesulfonic acid as organocatalysts in H2O/acetone (2:1) at room temperature. This method offers mild reaction conditions, excellent yields, easy workup, and readily accessible starting materials and catalysts.  相似文献   

8.
The synthesis of benzo[b]phenanthro[2, 3-d]thiophene ( 5 ), benzo[b]phenanthro[4, 3-d]thiophene ( 6 ), benzo-[b]phenanthro[2, 1-d]thiophene ( 9 ), benzo[b]phenanthro[3, 2-d]thiophene ( 14a ), anthra[1, 2-b]benzo[d]thiophene ( 24 ), anthra[2, 3-b]benzo[d]thiophene ( 29 ) and anthra[2, 1-b]benzo[d]thiophene ( 30 ) is described as well as the preparation of 13-methylbenzo[b]phenanthro[3, 2-d]thiophene ( 14b ).  相似文献   

9.
The bonding situation in a series of biphenylene analogues – benzo[b]biphenylene and its dication, 4,10‐dibromobenzo[b]biphenylene, naphtho[2,3‐b]biphenylene and its dianion, benzo[a]biphenylene, (biphenylene)tricarbonylchromium, benzo[3,4]cyclobuta[1,2‐c]thiophene, benzo[3,4]cyclobuta[1,2‐c]thiophene 2‐oxide, benzo[3,4]cyclobuta[1,2‐c]thiophene 2,2‐dioxide, 4,10‐diazabenzo[b]biphenylene, biphenylene‐2,3‐dione, benzo[3,4]cyclobuta[1,2‐b]anthracene‐6,11‐dione, and 3,4‐dihydro‐2H‐benzo[3,4]cyclobuta[1,2]cycloheptene – where one of the two benzo rings of biphenylene is replaced by a different π‐system (B) was investigated on the basis of the NMR parameters of these systems. From the vicinal 1H,1H spin‐spin coupling constants, the electronic structure of the remaining benzo ring (A) is derived via the Q‐value method. It is found that increasing tendency of B to tolerate exocyclic double bonds at the central four‐membered ring of these systems favors increased π‐electron delocalization in the A ring. The analysis of the chemical shifts supports this conclusion. NICS (nucleus‐independent chemical shift) values as well as C,C bond lengths derived from ab initio calculations are in excellent agreement with the experimental data. The charged systems benzo[b]biphenylene dication and naphtho[2,3‐b]biphenylene dianion ( 7 2−) are also studied by 13C NMR measurements. The charge distribution found closely resembles the predictions of the simple HMO model and reveals that 7 2− can be regarded as a benzo[3,4]cyclobuta[1,2‐b]‐substituted anthracene dianion. It is shown that the orientation of the tricarbonylchromium group in complexes of benzenoid aromatics can be derived from the vicinal 1H,1H coupling constants.  相似文献   

10.
We report an efficient entry into substituted 3‐(ω‐aminoalkyl)‐benzo[b]thiophenes that allows rapid generation of structural diversity. Alkylation of α,ω‐dihaloketones with thiophenols followed by acid‐catalysed cyclisation led to an efficient synthesis of 3‐(ω‐aminoalkyl)benzo[b]thiophenes. 2‐Carboethoxy derivatives were prepared using a directed ortho‐metallation approach. These derivatives were readily converted into the corresponding amines.  相似文献   

11.
The synthesis of benzo[b]phenanthro[1,2-d]thiphene ( 1 ), benzo[b]phenanthro[4,3-d]thiophene ( 2 ), benzo-[b]phenanthro[2,1-d]thiophene ( 3 ) and benzo[b]phenanthro[3,4-d]thiophene ( 4 ) from appropriately substituted olefines by photochemical cyclodehydrogenation is described. The photolysis of olefin 9 gave a mixture of 4 and anthra[1,2-b]benzo[d]thiophene ( 5 ).  相似文献   

12.
In an attempt to establish novel candidate with promising anticancer activity, two derivatives of (benzo[d]thiazol‐2‐yl)thiophene backbone 1 and 14 were synthesized, and they further reacted with various chemical reagents to afford the corresponding substituted thiophene derivatives 6 , 8 , 10 , 15 , 17 , and 20 , thieno[3,2‐d]pyrimidine derivatives 2 – 5 , 7 , 9 , 16 , 21 , 23 , and 24 , thieno[3,2‐b]pyridine derivatives 11 – 13 , and thieno[3,2‐e][1,4]oxazepine derivative 18 . Structures of prepared compounds were affirmed via spectral and elemental data. Among the obtained compounds, seven derivatives 2 , 3 , 4 , 5 , 11 , 12 , and 13 were chosen by National Cancer Institute, USA. Such compounds were screened for their antitumor activity versus 60 cancer cell lines in one‐dose (10 μmol) screening assay. The outcomes showed that all selected compounds exhibited moderate to high anticancer activity towards many cancer cell lines among which compounds 5 and 11 exerted potent antitumor activity against numerous malignant growth cell lines particularly Ovarian Cancer IGROV1.  相似文献   

13.
All isomers of the parent anthra[b]thiophenes and benzo[b]naphtho[d]thiophenes, namely anthra[2,3-b]thio-phene, anthra[2,1-b]thiophene, anthra[1,2-b]thiophene, benzo[b]naphtho[2,3-d]thiophene, benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[1,2-d]thiophene were synthesized using a new procedure.  相似文献   

14.
The syntheses of three bis(benzo[b]thiophen‐2‐yl)methane derivatives, namely bis(benzo[b]thiophen‐2‐yl)methanone, C17H10OS2, (I), 1,1‐bis(benzo[b]thiophen‐2‐yl)‐3‐(trimethylsilyl)prop‐2‐yn‐1‐ol, C22H20OS2Si, (II), and 1,1‐bis(benzo[b]thiophen‐2‐yl)prop‐2‐yn‐1‐ol, C19H12OS2, (III), are described and their crystal structures discussed comparatively. The conformation of ketone (I) and the respective analogues are rather similar for most of the compounds compared. This is true for the interplanar angles, the Caryl—Cbridge—Caryl angles and the dihedral angles. The best resemblance is found for a bioisotere of (I), viz. 2,2′‐dinaphthyl ketone, (VII). By way of interest, the crystal packings also reveal similarities between (I) and (VII). In (I), the edge‐to‐face interactions seen between two napthyl residues in (VII) are substituted by S…π contacts between the benzo[b]thiophen‐2‐yl units in (I). In the structures of the bis(benzo[b]thiophen‐2‐yl)methanols, i.e. (II) and (III), the interplanar angles are also quite similar compared with analogues and related active pharmaceutical ingredients (APIs) containing the dithiophen‐2‐ylmethane scaffold, though the dihedral angles show a larger variability and produce unsymmetrical molecules.  相似文献   

15.
New electroluminescent polymers (poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole) ( P1) and poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole‐co‐[4‐(2‐ethylhexyloxyl)phenyl]diphenylamine ( P2) ) possess hole‐transporting or electron‐transporting units or both in the main chains. Electron‐deficient benzothiadiazole and electron‐rich triphenylamine moieties were incorporated into the polymer backbone to improve the electron‐transporting and hole‐transporting characteristics, respectively. P1 and P2 show greater solubility than poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene ( PFTT ), without sacrificing their good thermal stability. Moreover, owing to the incorporation of the electron‐deficient benzothiadiazole unit, P1 and P2 exhibit remarkably lower LUMO levels than PFTT , and thus, it should facilitate the electron injection into the polymer layer from the cathode electrode. Consequently, because of the balance of charge mobility, LED devices based on P1 and P2 exhibit greater brightness and efficiency (up to 3000 cd/m2 and 1.35 cd/A) than devices that use the pristine PFTT . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 243–253, 2006  相似文献   

16.
Indolo[3,2‐b]carbazole is a molecule of great biological significance, as it is formed in vivo after consumption of cruciferous vegetables. The reaction of 1H‐indole and various aldehydes in the presence of a catalytic amount of N,2‐dibromo‐6‐chloro‐3,4‐dihydro‐2H‐benzo[e][1,2,4]thiadiazine‐7‐sulfonamide 1,1‐dioxide as an efficient and homogeneous catalyst in acetonitrile at 50°C produces 6,12‐disubstituted 5,7‐dihydroindolo[2,3‐b]carbazole with an in good to excellent yield. The presented technique offers a fast and robust method, by the use of inexpensive commercially available starting materials toward 6,12‐disubstituted 5,7‐dihydroindolo[2,3‐b]carbazole. A new anomeric‐based oxidation was kept in mind for the final step of the indolo[2,3‐b]carbazoles synthesis. The suggested anomeric‐based oxidation mechanism was supported by experimental and theoretical evidences.  相似文献   

17.
张元  辛志君  薛吉军  李瀛 《中国化学》2008,26(8):1461-1464
本文报道了一种以邻炔基苯酚为原料,通过金催化的炔烃羟基化反应合成2取代苯并呋喃的方法. 该方法可以在温和的条件下快速以高产率得到各种2取代苯并呋喃. 关键前体邻炔基苯酚可以很容易由Sonogashira 反应制备.  相似文献   

18.
This paper describes the preparation of some pyrazolo[1,5‐a]‐, 1,2,4‐triazolo[1,5‐a]‐ and imidazo[1,2‐a]‐pyrimidines substituted on the pyrimidine moiety by a 4‐[(N‐acetyl‐N‐ethyl)amino]phenyl group. A new synthesis of related benzo[h]pyrazolo[1,5‐a]‐, benzo[h]pyrazolo[5,1‐b]‐ and benzo[h]1,2,4‐triazolo[1,5‐a]‐quinazolines is also reported.  相似文献   

19.
Dibenz[b,f]azepine (DBA) is a privileged 6‐7‐6 tricyclic ring system of importance in both organic and medicinal chemistry. Benzo[b]pyrimido[5,4‐f]azepines (BPAs), which also contain a privileged 6‐7‐6 ring system, are less well investigated, probably because of a lack of straightforward and versatile methods for their synthesis. A simple and versatile synthetic approach to BPAs based on intramolecular Friedel–Crafts alkylation has been developed. A group of closely‐related benzo[b]pyrimido[5,4‐f]azepine derivatives, namely (6RS)‐4‐chloro‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3, (I), (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3O, (II), (6RS)‐4‐<!?tlsb=‐0.14pt>chloro‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C15H16ClN3O, (III), and (6RS)‐4‐chloro‐8‐methoxy‐6,11‐dimethyl‐2‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C21H20ClN3O, (IV), has been prepared and their structures compared with the recently published structure [Acosta‐Quintero et al. (2015). Eur. J. Org. Chem. pp. 5360–5369] of (6RS)‐4‐chloro‐2,6,8,11‐tetramethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (V). All five compounds crystallize as racemic mixtures and they have very similar molecular conformations, with the azepine ring adopting a boat‐type conformation in each case, although the orientation of the methoxy substituent in each of (III) and (IV) is different. The supramolecular assemblies in (II) and (IV) depend upon hydrogen bonds of the O—H...N and C—H...π(arene) types, respectively, those in (I) and (V) depend upon π–π stacking interactions involving pairs of pyrimidine rings, and that in (III) depends upon a π–π stacking interaction involving pairs of phenyl rings. Short C—Cl...π(pyrimidine) contacts are present in (I), (II) and (IV) but not in (III) or (V).  相似文献   

20.
An efficient synthetic approach to the substituted benzo[b]furan and benzo[b]thiophene scaffolds by iodine‐mediated cyclization of the corresponding enaminones is described. This protocol was applied to a large series of these latter precursors to afford the respective benzoheterocycles substituted at the C‐2 position by a carbonyl group functionality. A study of the factors that control this process reveals that the reactivity depends on the presence of electron‐donor groups in the aryl ring of the aryloxycarbonylic and arylthiocarbonylic moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号