首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosized polystyrene (PS) latexes stabilized by the mixture of cationic/cationic, anionic/anionic, or anionic/cationic surfactants of various types with high weight ratios of PS to surfactant (ca. 10:1) have been successfully synthesized by a semicontinuous microemulsion polymerization process. For cationic or anionic systems, spherical latex particles with a weight-averaged diameter (Dw) ranging from about 22 to 53 nm were nearly linearly dependent on the weight ratio of the mixed surfactants with similar charges. Their particle size distributions were rather uniform (Dw/Dn < 1.20). For a system with oppositely charged surfactants at nonequimolar ratios, it could produce stable PS particles up to 94 nm in diameter. High molar masses (Mw) of PS ranging from 1.1 to 1.9 x 10(6) g/mol could easily be obtained for all three systems investigated. For both cationic/cationic and anionic/anionic surfactant systems, the number of PS particles per milliliter of latex (Np) generated in the very early stage of O/W' microemulsion remained rather constant throughout the polymerization. This was controlled by using only 1 wt% of mixed surfactants and the continuous addition of a small amount of styrene. The present polymerization method allows one to synthesize nanoparticles of PS or other polymers of high polymer/surfactant weight ratios at some particle sizes that are unable to achieve them with a single type of surfactant.  相似文献   

2.
聚乙二醇体系中含铜化合物液相热解法制备纳米铜粉   总被引:1,自引:0,他引:1  
杨瑞卿  樊金串 《材料导报》2014,28(14):88-90,94
以聚乙二醇(PEG200)为分散介质,氢氧化铜为铜源,采用液相热解法制备纳米铜粉。用X射线衍射仪(XRD)和透射电子显微镜(TEM)对产物进行表征,考察了不同种类的络合剂和表面活性剂对纳米铜粒径和形貌的影响。研究结果表明:在PEG200分散介质中于220℃恒温3h可以得到单质铜粉,其结晶性较好,粒径为30~40nm;添加乙二胺络合剂可得到纤维状的纳米铜粉,用乙二胺络合再添加不同的表面活性剂能减小纳米铜粉的粒径并改变其形貌;在纳米铜的制备中PEG同时起着还原剂和结构导向剂的作用。  相似文献   

3.
Spherical CuS nanocrystals were synthesised via reflux (R) and hydrothermal (H) methods using copper acetate monohydrate (Cu (ac)2·H2O) and thioacetamide as precursors. This process was carried out in the absence and presence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) surfactants. The products were characterised by using the methods of X-ray powder diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray and transmission electron microscopy. According to XRD results, nanoparticles with the size of 16–23 nm were obtained. The effects of surfactant type, reaction time and reaction temperature on the morphology, yield, size and phase of the obtained products were investigated. According to this study, CTAB was more appropriate than SDS in obtaining uniform and spherical CuS nanoparticles.  相似文献   

4.
The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder. Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.  相似文献   

5.
For control of the pore size distribution of silica gel, the gel was prepared using the sol-gel process modified by adding several kinds of inorganic salts and surfactants. The addition of any inorganic salt decreased the gel surface area and depressed the formation of mesopores. The surface area and the volume occupied by mesopores changed with the valency of the cation of the salt used. When surfactants were employed as additives, the surface area and the pore size distribution were greatly dependent on the kind of head group of the surfactant: non-ionic surfactant addition monotonously increased the surface area owing to the formation of larger mesopores; anionic surfactant addition significantly decreased the surface area because of the decrease in the volume of mesopores; cationic surfactants caused the surface area to decrease with small additions as anionic surfactants did, while further addition raised the surface area. The rise in the surface area was due to a marked formation of smaller mesopores. These results are discussed on the basis of the interfacial properties of the additives.  相似文献   

6.
以聚乙二醇400为表面活性剂、二乙醇胺为抑制剂,采用蒸发诱导自组装法(EISA)制备了介孔TiO2纳米粉体,并利用尿素为掺杂剂通过固相反应制备出高活性N掺杂介孔TiO2纳米粉体.利用XRD、FE-SEM、TG-DSC等方法对粉体的物相和形貌进行分析表征.结果表明,合成的粉体尺寸分布均匀、纯度高、具有均匀分布的介孔网状结构;N掺杂使介孔TiO2纳米粉体的UV-Vis光吸收曲线产生红移.  相似文献   

7.
Additive manufacturing promises high flexibility and customized product design. Powder bed fusion processes use a laser to melt a polymer powder at predefined locations and iterate the scheme to build 3D objects. The design of flowable powders is a critical parameter for a successful fabrication process that currently limits the choice of available materials. Here, a bottom‐up process is introduced to fabricate tailored polymer‐ and composite supraparticles for powder‐based additive manufacturing processes by controlled aggregation of colloidal primary particles. These supraparticles exhibit a near‐spherical shape and tailored composition, morphology, and surface roughness. These parameters can be precisely controlled by the mixing and size ratio of the primary particles. Polystyrene/silica composite particles are chosen as a model system to establish structure–property relations connecting shape, morphology, and surface roughness to the adhesion within the powder, which is accessed by tensile strength measurements. The adhesive properties are then connected to powder flowability and it is shown that the resulting powders allow the formation of dense powder films with uniform coverage. Finally, successful powder bed fusion is demonstrated by producing macroscopic single layer specimens with uniform distribution of nanoscale silica additives.  相似文献   

8.
Electrically conductive composite powders and compounds were produced using a mechanical alloying method. As starting materials, copper powder and a mixture of butadiene-acrylonitrile-copolymer and polyvinylchloride were used. After alloying, the powderlike material consisted of a mixture of fine copper powder embedded in the polymer matrix. Milling resulted in a copper powder of particle size 300 nm to 2 μm. The alloyed powders were compacted at a pressure of 0.37 GPa at 90°C with a holding time of 1 minute. The resistivity of the compound was measured to be 8.6 × 10-4 ohm-cm. The unusual reduction in particle size to the nanometer level and formation of spherically formed copper polymer composite particles is explained by the reactions of the copper atoms with cyano and other functional groups of the polar polymers. The structurally modified polymer forms a tight encapsulation coating on the surface of the copper, and the flat-formed metal particles are recovered in spherical form due to strong interfacial forces, resulting in increased electrical conductivity.  相似文献   

9.
目的 探究利用真空气雾化法制备AlSi10Mg球形粉末过程中各参数对粉末质量的影响,以得到最佳的制粉工艺参数。以制备的粉末进行增材制造,研究块体组织及其力学性能。方法 针对制备的球形粉末,采用扫描电镜(SEM)观察粉末的球形度及其内部组织。通过分析球形粉末的平均粒径与粒度分布区间总结最优制粉参数。针对以球形粉末增材制造出的沉积态样品,采用X射线衍射仪(XRD)、扫描电镜(SEM)研究其微观组织形貌并通过拉伸试验研究其力学性能。结果 真空气雾化法制备出的粉末表面光洁且球形度良好,同时粉末平均粒径随雾化压力的增大呈现先减小后增大的趋势并在4.0 MPa时粒径最小,且与环孔喷嘴相比,环缝喷嘴制备出的粉末粒径更小。粉末内部组织由胞状晶与树枝晶构成。通过SLM制备的沉积态样品组织以沿沉积方向的枝晶为主,该样品的力学性能较优异,断裂方式主要为沿晶断裂。结论 在使用真空气雾化法制备增材制造用球形粉末时,应选择4.0 MPa的气雾化压力并选择环缝喷嘴,方能得到质量最佳的球形粉末。  相似文献   

10.
Development of particles that change shape in response to external stimuli has been a long‐thought goal for producing bioinspired, smart materials. Herein, the temperature‐driven transformation of the shape and morphology of polymer particles composed of polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) block copolymers (BCPs) and temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAM) surfactants is reported. PNIPAM acts as a temperature‐responsive surfactant with two important roles. First, PNIPAM stabilizes oil‐in‐water droplets as a P4VP‐selective surfactant, creating a nearly neutral interface between the PS and P4VP domains together with cetyltrimethylammonium bromide, a PS‐selective surfactant, to form anisotropic PS‐b‐P4VP particles (i.e., convex lenses and ellipsoids). More importantly, the temperature‐directed positioning of PNIPAM depending on its solubility determines the overall particle shape. Ellipsoidal particles are produced above the critical temperature, whereas convex lens‐shaped particles are obtained below the critical temperature. Interestingly, given that the temperature at which particle shape change occurs depends solely on the lower critical solution temperature (LCST) of the polymer surfactants, facile tuning of the transition temperature is realized by employing other PNIPAM derivatives with different LCSTs. Furthermore, reversible transformations between different shapes of PS‐b‐P4VP particles are successfully demonstrated using a solvent‐adsorption annealing with chloroform, suggesting great promise of these particles for sensing, smart coating, and drug delivery applications.  相似文献   

11.
An advanced emulsion method was developed via combined ultrasound-microwave irradiation and utilized for the crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 2,4-dinitroaniline (DNA) spherical composite, which had been successfully fabricated with molar ratio of 1:1, The morphology and structure of the products were fully characterized using field emission scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy. The thermal stability of micro structure was closely investigated via differential scanning calorimetry, and sensitivity performance was tested. The results suggested that the surface of particle was glazed while particle with narrow size distribution were produced. Remarkably, the drop height of 50% explosion probability data showed insensitivity compared to the previously reported energetic composites, which data was up to 57.8 cm. Besides, some experimental conditions including the amount of surfactant gelatin (0–1.2 wt% of accounting for the mass of CL-20) and standing time were examined. It was found that the greater the concentration of surfactant, the more conducive to the formation of emulsion, and standing time had a dramatically significant effect on the particle size. Summarily, the present process involving an initial powder made it possible to obtain micro spherical composite with ideal impact sensitivity, compared to those produced by conventional methods.  相似文献   

12.
采用相反转悬浮液体系中不同表面活性剂同步修饰的方法制备超细低熔点金属颗粒,研究阳离子和阴离子表面活性剂对金属颗粒的影响。通过沉降实验观察不同表面活性剂修饰的金属颗粒在水中的分散及稳定性,并采用激光粒度仪、扫描电镜对低熔点金属颗粒的粒径和形貌进行表征分析。结果表明:表面活性剂的种类对制备低熔点金属颗粒有重要的影响,其中阴离子表面活性剂的效果最好。对几种阴离子表面活性剂的研究表明:油酸钠的作用最明显,其浓度大小对低熔点金属颗粒的粒径、形貌和分散效果有显著的作用。采用质量分数为1%的油酸钠水溶液可制备出分散稳定、粒径分布窄和球状的超细低熔点金属颗粒,平均粒径为0.343μm。  相似文献   

13.
This paper describes the adsorption mechanisms and aggregation properties of cetyltrimethylammonium bromide (CTAB) and didodecyldimethylammonium bromide (DDAB) surfactants that are used for dynamic coatings in capillary electrophoresis (CE). Atomic force microscopy is used to directly visualize surfactant adsorption on fused silica. It was found that the single-chained surfactant CTAB forms spherical aggregates on silica while the double-chained surfactant DDAB forms a bilayer. Aggregation at the surface occurs at approximately the same surfactant concentration in which EOF reversal is observed in CE. The nearest-neighbor distance between CTAB aggregates varies inversely with buffer pH and becomes constant at the point when the silanol groups are fully ionized. DDAB forms a flat, uniform coating independent of pH. Increasing the buffer ionic strength changes the morphology of the CTAB aggregates from spherical to cylindrical. The change in morphology can alter the surface coverage, which is related to the "normalized" EOF measured in identical buffers. The morphology of a surfactant coating is also shown to affect its ability to inhibit protein adsorption to the capillary wall. Specifically, the full surface coverage provided by DDAB proved superior in a head-to-head comparison with CTAB.  相似文献   

14.
《Materials Letters》2007,61(23-24):4540-4544
In this work, we report the synthesis of lithium aluminate nanoparticles using simple coprecipitation method in various aqueous surfactant solutions and microemulsion systems. The particles have also been synthesized by coprecipitation without surfactants and sol–gel methods for comparison purpose. Nanocrystalline powders of lithium aluminate with spherical shape were obtained upon calcination. The resultant powders were characterized by XRD, SEM, TGA and BET techniques. As per the results from X-ray diffraction (XRD), the powder prepared by coprecipitation in the presence of Tween 80 and sol–gel showed purer γ-phase when it was calcined at 950 °C. Scanning electron microscopy (SEM) results show that the type of surfactant used has a distinct effect on the size of the lithium aluminate particles. The sample prepared by microemulsion technique shows smaller average particle size of 30 nm and high surface area (70 m2/g).  相似文献   

15.
Background: Solid lipid nanoparticle (SLN) systems have been applied to various drugs and delivery routes. Vitamin K1 is an important cofactor for maintaining hemostasis and preventing hemorrhage. Method: Vitamin K1-loaded SLNs are systematically being developed by optimizing triglycerides and lipophilic and hydrophilic surfactants based on the size and stability of the resulting SLNs. Concentrations of the surfactants, Myverol and Pluronic, were optimized by a central composite design and response surface methodology. Vitamin K1 (phylloquinone) was used as a lipophilic drug in the SLN system to evaluate the potential for oral delivery. Results: Vitamin K1-loaded SLNs had a mean size of 125 nm and a zeta potential of ?23 mV as measured by photon correlation spectroscopy. The prepared SLNs were examined by differential scanning calorimetry and transmission electron microscopy and found to have an imperfect crystalline lattice and a spherical morphology. Effects of ultrasonication duration and drug load on the particle size and entrapment efficiency of the SLNs were also evaluated. Conclusion: More than 85% of the vitamin K1 was entrapped in SLNs when the payload was <5%. The vitamin K1 in SLNs was stable for a 54-h duration in simulated gastric and intestinal fluids. The particle size and vitamin K1 entrapped in the SLN were stable after 4 months of storage at 25°C. The results demonstrated that SLNs prepared herein can potentially be exploited as carriers for the oral delivery of vitamin K1.  相似文献   

16.
The aim of this study is to apply the inkjet technique to liquid–liquid interfacial crystallization. Instillation with an inkjet nozzle was compared with the batch process in order to evaluate the effectiveness of the inkjet technique for controlling particle morphology. The effects of amino acid solution concentration and organic solvent type on particle properties were investigated for instillation with an inkjet nozzle. The morphology of alanine and glycine particles was observed by scanning electron microscopy and X-ray powder diffraction. The inner structure of alanine and glycine particles was investigated by cutting particles with an ion milling machine. Controlling particle size by adjusting the droplet size in the instillation with an inkjet nozzle was found to be feasible. Most alanine and glycine particles produced by instillation were spherical, whereas most particles produced by the batch process were non-spherical. A higher concentration of amino acid in the solution may lead to the generation of solute particles at the spherical interface. It was found that the surface structure of alanine particles changed when using two kinds of organic solvents as anti-solvents. In addition, instillation allowed for β-glycine to be identified and the crystal polymorph of the particles to be controlled.  相似文献   

17.
高频感应熔化金属丝气雾化制备球形钛粉   总被引:1,自引:0,他引:1  
陆亮亮  刘雪峰  张少明  徐骏  贺会军  盛艳伟 《材料导报》2018,32(8):1267-1270, 1288
提出了新型低成本球形钛粉气雾化制备技术——高频感应熔化金属丝气体雾化技术(Wire induction heating-gas atomization,WIGA),研究了雾化气体压力、熔体温度、送料速度对粉末性能的影响。结果表明:所制钛粉末的形貌为球形,球形度较高,粉末表面存在少量"卫星球"颗粒,占比约为1%;提高雾化压力、熔体温度和降低送丝速度均使粉末平均粒径D50减小。实验所得最佳雾化参数为:雾化气体压力4.0 MPa,熔体温度2 000℃,送料速度0.8m/min,在此条件下得到的钛粉末平均粒径为41.8μm。  相似文献   

18.
Cu-coated graphite powders were fabricated by electrodeposition using a device that we developed in our lab. The effect of different type surfactants on the dispersion and stability of graphite particles in a copper sulfate electrolyte was investigated by UV–Vis spectrophotometry. The electrochemical behavior of the stainless steel cathode plate and graphite particles were examined by linear sweep voltammetry. It shows that surfactants improved dispersion and stability of graphite particles in electrolyte, produced different electrochemical polarization behaviors on graphite surface and cathodic stainless plate, respectively. In the presence of surfactants, copper was apt to be deposited on graphite particle surface. The optimum surfactant content in electrolyte is 150 mg dm?3 for all of three types of surfactants. Hexadecyltrimethyl ammonium bromide (CTAB) is the most effective surfactant for improving the quality of copper coated graphite powders among the three type surfactants.  相似文献   

19.
Nanostructural copper-detonation nanodiamond (DND) composites have been obtained by the method of spray drying. The technological process consists in spraying and drying a mixture of an aqueous copper salt solution and DND suspension, followed by thermal treatment in a reductive atmosphere. The DND content in copper powder was varied from 0.5 to 5.0 mass %. The average DND particle size in suspension was 4–6 nm. Copper-DND nanocomposite powders consist of nearly spherical particles with average size within 20–30 μm. Composition and structure of obtained materials have been studied.  相似文献   

20.
Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号