首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ionic metal–organic frameworks (MOFs) are a subclass of porous materials that have the ability to incorporate different charged species in confined nanospace by ion‐exchange. To date, however, very few examples combining mesoporosity and water stability have been realized in ionic MOF chemistry. Herein, we report the rational design and synthesis of a water‐stable anionic mesoporous MOF based on uranium and featuring tbo‐type topology. The resulting tbo MOF exhibits exceptionally large open cavities (3.9 nm) exceeding those of all known anionic MOFs. By supercritical CO2 activation, a record‐high Brunauer‐Emmett‐Teller (BET) surface area (2100 m2 g?1) for actinide‐based MOFs has been obtained. Most importantly, however, this new uranium‐based MOF is water‐stable and able to absorb positively charged ions selectively over negatively charged ones, enabling the efficient separation of organic dyes and biomolecules.  相似文献   

2.
Based on the newly designed ligand 4′‐(3,5‐dicarboxyphenyl)‐4,2′:6′,4′′‐terpyridine (DCTP), a unique semi‐conductive 3D framework {[CuΙCuΙΙ2(DCTP)2]NO3?1.5 DMF}n ( 1 ) with a narrow band gap of 2.1 eV, was obtained and structurally characterized. DFT calculations with van de Waals correction employed to explore the electronic structure of 1 , clearly revealed its semi‐conductive behavior. Furthermore, we found that 1 exhibits a superior band alignment with water to produce hydrogen and degrade organic pollutants. Without adding any photosensitizers, 1 displays an efficiently photocatalytic hydrogen production in water based on the photo‐generated electrons under UV/Vis light. 1 also exhibits excellent photo‐degradation of methyl blue under visible‐light owing to the strong oxidization of excited holes. It is the first example of MOFs with doubly photocatalytic activities related to photo‐generated electrons and holes, respectively.  相似文献   

3.
Photoconductivity is a characteristic property of semi‐conductors. Herein, we present a photo‐conducting crystalline metal–organic framework (MOF) thin film with an on–off photocurrent ratio of two orders of magnitude. These oriented, surface‐mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C60 guests, loaded in the pores using a layer‐by‐layer process. By comparison with results obtained for reference MOF structures and based on DFT calculations, we conclude that donor–acceptor interactions between the porphyrin of the host MOF and the C60 guests give rise to a rapid charge separation. Subsequently, holes and electrons are transported through separate channels formed by porphyrin and by C60, respectively. The ability to tune the properties and energy levels of the porphyrin and fullerene, along with the controlled organization of donor–acceptor pairs in this regular framework offers potential to increase the photoconduction on–off ratio.  相似文献   

4.
The one‐step synthesis and characterization of a new and robust titanium‐based metal–organic framework, ACM‐1 , is reported. In this structure, which is based on infinite Ti?O chains and 4,4′,4′′,4′′′‐(pyrene‐1,3,6,8‐tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge‐separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.  相似文献   

5.
Vanadium catalysts offer unique selectivity in olefin polymerization, yet are underutilized industrially owing to their poor stability and productivity. Reported here is the immobilization of vanadium by cation exchange in MFU‐4l, thus providing a metal–organic framework (MOF) with vanadium in a molecule‐like coordination environment. This material forms a single‐site heterogeneous catalyst with methylaluminoxane and provides polyethylene with low polydispersity (PDI≈3) and the highest activity (up to 148 000 h?1) reported for a MOF‐based polymerization catalyst. Furthermore, polyethylene is obtained as a free‐flowing powder as desired industrially. Finally, the catalyst shows good structural integrity and retains polymerization activity for over 24 hours, both promising attributes for the commercialization of vanadium‐based polyolefins.  相似文献   

6.
Rationally tailoring a robust artificial coating can enhance the life‐time of fragile biomacromolecules. However, the coating also can restrain the activity of the guest because of the decreased substrate accessibility. Herein, we report a peptide‐directed strategy that enables in situ tailoring of the MOF‐shrouded biohybrids into controllable nanoarchitectures. The MOF biohybrid can be shaped from different 3D microporous architectures into a 2D mesoporous layer by a peptide modulator. Using this mild strategy, we show that the nanoarchitectures of the MOF coatings significantly affect the biological functions of the contained biomacromolecules. The biomacromolecules entrapped within the novel 2D mesoporous spindle‐shaped MOFs (2D MSMOFs) have significantly increased bioactivity compared to when encased within the hitherto explored 3D microporous MOFs. The improvement results from the shortened diffusion path and enlarged pore channel in 2D MSMOFs. Meanwhile, the thin 2D MSMOF layer also can provide excellent protection of the hosted biomacromolecules or protein‐scaffolded biominerals through structural confinement.  相似文献   

7.
Cyclization of propargylic alcohols with CO2 is an important reaction in industry, and noble‐metal catalysts are often employed to ensure the high product yields under environmentally friendly conditions. Herein a porous noble‐metal‐free framework 1 with large 1D channels of 1.66 nm diameter was synthesized for this reaction. Compound 1 exhibits excellent acid/base stability, and is even stable in corrosive triethylamine for one month. Catalytic studies indicate that 1 is an effective catalyst for the cyclization of propargylic alcohols and CO2 without any solvents under mild conditions, and the turnover number (TON) can reach to a record value of 14 400. Furthermore, this MOF catalyst also has rarely seen catalytic activity when the biological macromolecule ethisterone was used as a substrate. Mechanistic studies reveal that the synergistic catalytic effect between CuI and InIII plays a key role in the conversion of CO2.  相似文献   

8.
9.
Through topological rationalization, a zeotype mesoporous Zr‐containing metal–organic framework (MOF), namely PCN‐777, has been designed and synthesized. PCN‐777 exhibits the largest cage size of 3.8 nm and the highest pore volume of 2.8 cm3 g?1 among reported Zr‐MOFs. Moreover, PCN‐777 shows excellent stability in aqueous environments, which makes it an ideal candidate as a support to incorporate different functional moieties. Through facile internal surface modification, the interaction between PCN‐777 and different guests can be varied to realize efficient immobilization.  相似文献   

10.
11.
The development of catalysts capable of fast, robust C?H bond amination under mild conditions is an unrealized goal despite substantial progress in the field of C?H activation in recent years. A Mn‐based metal–organic framework (CPF‐5) is described that promotes the direct amination of C?H bonds with exceptional activity. CPF‐5 is capable of functionalizing C?H bonds in an intermolecular fashion with unrivaled catalytic stability producing >105 turnovers.  相似文献   

12.
Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors.  相似文献   

13.
Doping the well‐known metal–organic framework MIL‐53(Al) with vanadium(IV) ions leads to significant changes in the breathing behaviour and might have repercussions on the catalytic behaviour as well. To understand the properties of such a doped framework, it is necessary to determine where dopant ions are actually incorporated. Electron paramagnetic resonance (EPR) and electron–nuclear double resonance (ENDOR) are applied to reveal the nearest environment of the paramagnetic vanadium(IV) dopant ions. EPR spectra of as‐synthesised vanadium‐doped MIL‐53 are recorded at S‐, X‐, Q‐ and W‐band microwave frequencies. The EPR spectra suggest that at low dopant concentrations (1.0–2.6 mol %) the vanadium(IV) ions are well dispersed in the matrix. Varying the vanadium dopant concentration within this range or the dopant salt leads to the same dominant EPR component. In the ENDOR spectra, hyperfine (HF) interactions with 1H, 27Al and 51V nuclei are observed. The HF parameters extracted from simulations strongly suggest that the vanadium(IV) ions substitute Al in the framework.  相似文献   

14.
Mixed‐metal metal–organic frameworks (MM‐MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM‐MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM‐MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM‐MOFs respect to related single‐metal MOFs. Emphasis is made on the use of MM‐MOFs as catalysts for tandem reactions.  相似文献   

15.
Encapsulation of active biomolecules and/or nanoparticles in metal–organic frameworks (MOFs) remains a great challenge in biomedical applications. In this work, through a stepwise in situ growth method, a black phosphorus quantum dot (BQ) and catalase were precisely encapsulated into the inner and outer layers of MOFs, respectively. The integrated MOF system as a tandem catalyst could convert H2O2 into O2 in MOF‐stabilized catalase outer layer, and then O2 was directly injected into MOF‐sensitized BQ inner, leading to high quantum yield of singlet oxygen. Upon internalization, the photodynamic therapy efficiency of the MOF system was 8.7‐fold greater than that without catalase, showing an enhanced therapeutic effect against hypoxic tumor cells. Furthermore, by coupling with photothermal therapy of BQs, photodynamic‐thermal synergistic therapy was realized both in vitro and in vivo.  相似文献   

16.
17.
18.
A microporous La–metal‐organic framework (MOF) has been synthesized by the reaction of La(NO3)3 ? 6 H2O with a ligand 4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐p‐aminobenzoate (TATAB) featuring three carboxylate groups. Crystal structure analysis confirms the formation of 3D MOF with hexagonal micropores, a Brunauer–Emmett—Teller (BET) surface area of 1074 m2 g?1 and high thermal and chemical stability. The CO2 adsorption capacities are 76.8 cm3 g?1 at 273 K and 34.6 cm3 g?1 at 293 K, a highest measured CO2 uptake for a Ln–MOFs.  相似文献   

19.
A majority of metal–organic frameworks (MOFs) fail to preserve their physical and chemical properties after exposure to acidic, neutral, or alkaline aqueous solutions, therefore limiting their practical applications in many areas. The strategy demonstrated herein is the design and synthesis of an organic ligand that behaves as a buffer to drastically boost the aqueous stability of a porous MOF (JUC‐1000), which maintains its structural integrity at low and high pH values. The local buffer environment resulting from the weak acid–base pairs of the custom‐designed organic ligand also greatly facilitates the performance of JUC‐1000 in the chemical fixation of carbon dioxide under ambient conditions, outperforming a series of benchmark catalysts.  相似文献   

20.
Cell‐free enzymatic catalysis (CFEC) is an emerging biotechnology that enable the biological transformations in complex natural networks to be imitated. This biomimetic approach allows industrial products such as biofuels and biochemical to be manufactured in a green manner. Nevertheless, the main challenge in CFEC is the poor stability, which restricts the effectiveness and lifetime of enzymes in sophisticated applications. Immobilization of the enzymes within solid carriers is considered an efficient strategy for addressing these obstacles. Specifically, putting an “armor‐like” porous metal–organic framework (MOF) exoskeleton tightly around the enzymes not only shields the enzymes against external stimulus, but also allows the selective transport of guests through the accessible porous network. Herein we present the concept of this biotechnology of MOF‐entrapped enzymes and its cutting‐edge applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号