首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic cathode materials have attracted extensive attention because of their diverse structures, facile synthesis, and environmental friendliness. However, they often suffer from insufficient cycling stability caused by the dissolution problem, poor rate performance, and low voltages. An in situ electropolymerization method was developed to stabilize and enhance organic cathodes for lithium batteries. 4,4′,4′′-Tris(carbazol-9-yl)-triphenylamine (TCTA) was employed because carbazole groups can be polymerized under an electric field and they may serve as high-voltage redox-active centers. The electropolymerized TCTA electrodes demonstrated excellent electrochemical performance with a high discharge voltage of 3.95 V, ultrafast rate capability of 20 A g−1, and a long cycle life of 5000 cycles. Our findings provide a new strategy to address the dissolution issue and they explore the molecular design of organic electrode materials for use in rechargeable batteries.  相似文献   

2.
《化学:亚洲杂志》2017,12(8):868-876
Compared to anode materials in Li‐ion batteries, the research on cathode materials is far behind, and their capacities are much smaller. Thus, in order to address these issues, we believe that organic conjugated materials could be a solution. In this study, we synthesized two non‐polymeric dianhydrides with large aromatic structures: NDA‐4N (naphthalenetetracarboxylic dianhydride with four nitrogen atoms) and PDA‐4N (perylenetetracarboxylic dianhydride with four nitrogen atoms). Their electrochemical properties have been investigated between 2.0 and 3.9 V (vs. Li+/Li). Benefiting from multi‐electron reactions, NDA‐4N and PDA‐4N could reversibly achieve 79.7 % and 92.3 %, respectively, of their theoretical capacity. Further cycling reveals that the organic compound with a relatively larger aromatic building block could achieve a better stability, as an obvious 36.5 % improvement of the capacity retention was obtained when the backbone was switched from naphthalene to perylene. This study proposes an opportunity to attain promising small‐molecule‐based cathode materials through tailoring organic structures.  相似文献   

3.
Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (?40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries.  相似文献   

4.
Spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode candidate for the next‐generation high energy‐density lithium‐ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site‐selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd m structure. This site‐selective doping not only suppresses unfavorable two‐phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg‐doped LNMOs exhibit extraordinarily stable electrochemical performance in both half‐cells and prototype full‐batteries with novel TiNb2O7 counter‐electrodes. This work pioneers an atomic‐doping engineering strategy for electrode materials that could be extended to other energy materials to create high‐performance devices.  相似文献   

5.
The garnet electrolyte presents poor wettability with Li metal, resulting in an extremely large interfacial impedance and drastic growth of Li dendrites. Herein, a novel ultra‐stable conductive composite interface (CCI) consisting of LiySn alloy and Li3N is constructed in situ between Li6.4La3Zr1.4Ta0.6O12 (LLZTO) pellet and Li metal by a conversion reaction of SnNx with Li metal at 300 °C. The LiySn alloy as a continuous and robust bridge between LLZTO and Li metal can effectively reduce the LLZTO/Li interfacial resistance from 4468.0 Ω to 164.8 Ω. Meanwhile, the Li3N as a fast Li‐ion channel can efficiently transfer Li ions and give their uniform distribution at the LLZTO/Li interface. Therefore, the Li/LLZTO@CCI/Li symmetric battery stably cycles for 1200 h without short circuit, and the all‐solid‐state high‐voltage Li/LLZTO@CCI/LiNi0.5Co0.2Mn0.3O2 battery achieves a specific capacity of 161.4 mAh g?1 at 0.25 C with a capacity retention rate of 92.6 % and coulombic efficiency of 100.0 % after 200 cycles at 25 °C.  相似文献   

6.
Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox‐active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium‐ion batteries (LIBs) or sodium‐ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g?1 for LIBs and 500 mAh g?1 for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders.  相似文献   

7.
A key challenge faced by organic electrodes is how to promote the redox reactions of functional groups to achieve high specific capacity and rate performance. Here, we report a two‐dimensional (2D) microporous covalent–organic framework (COF), poly(imide‐benzoquinone), via in situ polymerization on graphene (PIBN‐G) to function as a cathode material for lithium‐ion batteries (LIBs). Such a structure favors charge transfer from graphene to PIBN and full access of both electrons and Li+ ions to the abundant redox‐active carbonyl groups, which are essential for battery reactions. This enables large reversible specific capacities of 271.0 and 193.1 mAh g?1 at 0.1 and 10 C, respectively, and retention of more than 86 % after 300 cycles. The discharging/charging process successively involves 8 Li+ and 2 Li+ in the carbonyl groups of the respective imide and quinone groups. The structural merits of PIBN‐G will trigger more investigations into the designable and versatile COFs for electrochemistry.  相似文献   

8.
High‐Ni layered oxides are promising next‐generation cathodes for lithium‐ion batteries owing to their high capacity and lower cost. However, as the Ni content increases over 70 %, they have a high dynamic affinity towards moisture and CO2 in ambient air, primarily reacting to form LiOH, Li2CO3, and LiHCO3 on the surface, which is commonly termed “residual lithium”. Air exposure occurs after synthesis as it is common practice to handle and store them under ambient conditions. The air exposure leads to significant performance losses, and hampers the electrode fabrication, impeding their practical viability. Herein, we show that substituting a small amount of Al for Ni in the crystal lattice notably improves the chemical stability against air by limiting the formation of LiOH, Li2CO3, LiHCO3, and NiO in the near‐surface region. The Al‐doped high‐Ni oxides display a high capacity retention with excellent rate capability and cycling stability after being exposed to air for 30 days.  相似文献   

9.
Porous materials have many structural advantages for energy storage and conversion devices such as rechargeable batteries, supercapacitors, and fuel cells. When applied as a host material in lithium‐sulfur batteries, porous silica materials with a pomegranate‐like architecture can not only act as a buffer matrix for accommodating a large volume change of sulfur, but also suppress the polysulfide shuttle effect. The porous silica/sulfur composite cathodes exhibit excellent electrochemical performances including a high specific capacity of 1450 mA h g?1, a reversible capacity of 82.9 % after 100 cycles at a rate of C/2 (1 C=1672 mA g?1) and an extended cyclability over 300 cycles at 1 C‐rate. Furthermore, the high polysulfide adsorption property of porous silica has been proven by ex‐situ analyses, showing a relationship between the surface area of silica and polysulfide adsorption ability. In particular, the modified porous silica/sulfur composite cathode, which is treated by a deep‐lithiation process in the first discharge step, exhibits a highly reversible capacity of 94.5 % at 1C‐rate after 300 cycles owing to a formation of lithiated‐silica frames and stable solid‐electrolyte‐interphase layers.  相似文献   

10.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester‐based electrolyte is successfully demonstrated, which enables high‐voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full‐cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high‐voltage lithium metal batteries.  相似文献   

11.
12.
As advanced negative electrodes for powerful and useful high‐voltage bipolar batteries, an intercalated metal–organic framework (iMOF), 2,6‐naphthalene dicarboxylate dilithium, is described which has an organic‐inorganic layered structure of π‐stacked naphthalene and tetrahedral LiO4 units. The material shows a reversible two‐electron‐transfer Li intercalation at a flat potential of 0.8 V with a small polarization. Detailed crystal structure analysis during Li intercalation shows the layered framework to be maintained and its volume change is only 0.33 %. The material possesses two‐dimensional pathways for efficient electron and Li+ transport formed by Li‐doped naphthalene packing and tetrahedral LiO3C network. A cell with a high potential operating LiNi0.5Mn1.5O4 spinel positive and the proposed negative electrodes exhibited favorable cycle performance (96 % capacity retention after 100 cycles), high specific energy (300 Wh kg?1), and high specific power (5 kW kg?1). An 8 V bipolar cell was also constructed by connecting only two cells in series.  相似文献   

13.
Metal–organic frameworks (MOFs) have emerged as porous solids of a superior type for the fabrication of membranes. However, it is still challenging to prepare a uniformly dispersed robust MOF hybrid membrane. Herein, we propose a simple and powerful strategy, namely, coordination‐driven in situ self‐assembly, for the fabrication of MOF hybrid membranes. On the basis of the coordination interactions between metal ions and ligands and/or the functional groups of the organic polymer, this method was confirmed to be feasible for the production of a stable membrane with greatly improved MOF‐particle dispersion in and compatibility with the polymer, thus providing outstanding separation ability. As an experimental proof of concept, a high‐quality ZIF‐8/PSS membrane was fabricated that showed excellent performance in the nanofiltration and separation of dyes from water.  相似文献   

14.
Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.  相似文献   

15.
Further enhancement in the energy densities of rechargeable lithium batteries calls for novel cell chemistry with advanced electrode materials that are compatible with suitable electrolytes without compromising the overall performance and safety, especially when considering high‐voltage applications. Significant advancements in cell chemistry based on traditional organic carbonate‐based electrolytes may be successfully achieved by introducing fluorine into the salt, solvent/cosolvent, or functional additive structure. The combination of the benefits from different constituents enables optimization of the electrolyte and battery chemistry toward specific, targeted applications. This Review aims to highlight key research activities and technical developments of fluorine‐based materials for aprotic non‐aqueous solvent‐based electrolytes and their components along with the related ongoing scientific challenges and limitations. Ionic liquid‐based electrolytes containing fluorine will not be considered in this Review.  相似文献   

16.
A simple, cost‐effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high‐performance anode for lithium‐ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer‐sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g?1 after 300 cycles at 50 mA g?1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g?1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g?1 and finally back to 25 mA g?1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon‐coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.  相似文献   

17.
Nanostructure design and in situ transmission electron microscopy (TEM) are combined to demonstrate Sb‐based nanofibers composed of bunched yolk–shell building units as a significantly improved anode for potassium‐ion batteries (PIBs). Particularly, a metal–organic frameworks (MOFs)‐engaged electrospinning strategy coupled to a confined ion‐exchange followed by a subsequent thermal reduction is proposed to fabricate yolk–shell Sb@C nanoboxes embedded in carbon nanofibers (Sb@CNFs). In situ TEM analysis reveals that the inner Sb nanoparticles undergo a significant volume expansion/contraction during the alloying/dealloying processes, while the void space can effectively relieve the overall volume change, and the plastic carbon shell maintains the structural integrity of electrode material. This work provides an important reference for the application of advanced characterization techniques to guide the optimization of electrode material design.  相似文献   

18.
Phosphorus‐rich metal phosphides have very high lithium storage capacities, but they are difficult to prepare. A low‐temperature phosphorization method based on Mg reducing PCl3 in ZnCl2 molten salt at 300 °C is developed to synthesize phosphorus‐rich CuP2@C from a Cu‐MOF derived Cu@C composite. Abnormal oxidation of Cu by Zn2+ in the molten salt is observed, which leads to the porous honeycomb nanostructure and homogeneously distributed ultrafine CuP2 nanocrystals. The honeycomb CuP2@C exhibits excellent lithium storage performance with high reversible capacity (1146 mAh g?1 at 0.2 A g?1) and superior cycling stability (720 mAh g?1 after 600 cycles at 1.0 A g?1), showing the promising application of P‐rich metal phosphides in lithium ion batteries.  相似文献   

19.
Amorphous Si (a‐Si) shows potential advantages over crystalline Si (c‐Si) in lithium‐ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a‐Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a‐Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g?1 at 3 A g?1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a‐Si and c‐Si anodes clearly supports the advantages of a‐Si in lithium‐ion batteries.  相似文献   

20.
A method is presented for the scalable preparation of high‐quality graphdiyne nanotubes and ultrathin graphdiyne nanosheets (average thickness: ca. 1.9 nm) using Cu nanowires as a catalyst. For the storage of Li+ ions, the graphdiyne nanostructures show a high capacity of 1388 mAh g?1 and high rate performance (870 mA h g?1 at 10 A g?1, and 449.8 mA h g?1 at 20 A g?1) with robust stability, demonstrating outstanding overall potential for its applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号