首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
采用粉末冶金热压法制备了4种以石墨和二硫化钨为润滑剂的铜基复合材料,并采用环-块式磨损机对复合材料与Cu-5%银合金环对磨时的电滑动磨损性能进行测试。结果表明,铜-石墨-二硫化钨双润滑剂复合材料在800°C烧结时可以在保证其良好的润滑性能的同时获得较优的力学性能。随着二硫化钨与石墨质量比的增加,复合材料的接触电压降增加,铜-20%石墨-10%二硫化钨复合材料在电磨损过程中显示出最佳的抗磨性能,这主要是由于石墨和二硫化钨之间优异的协同润滑作用。在铜-石墨复合材料中添加适量的二硫化钨可以在电能损耗增加不多的同时显著提高其磨损抗力,为制备高性能滑动电接触材料提供了一种新颖的设计思路。  相似文献   

2.
以电解铜粉、树脂包覆石墨粉和二氧化硅粉为原料,经粉末冶金和冷压成坯块后,分别采用常压烧结和加压烧结工艺制备树脂碳包覆石墨/铜复合材料,对比两种烧结工艺制备的树脂碳包覆石墨/铜复合材料与现有法国罗兰MCXXP牌号电刷高速列车用接地电刷的显微组织和导电、力学、摩擦磨损性能。结果表明:与常压烧结材料相比,采用加压烧结制备的树脂碳包覆石墨/铜复合材料中,铜相的连通性更好,石墨分布更离散均匀,二氧化硅更好、更多地被嵌入铜基体,复合材料的密度、抗弯强度、硬度、导电和摩擦磨损性能显著提高,且与法国罗兰MCXXP牌号电刷的性能相当。  相似文献   

3.
采用放电等离子烧结技术(SPS)制备铜基石墨复合材料,研究不同烧结温度对铜-石墨复合材料的致密度、维氏硬度、电导率和载流摩擦磨损性能的影响。结果表明:在所制备的铜-石墨复合材料中,石墨均匀分布,铜与石墨界面结合紧密;随着烧结温度的升高,复合材料的致密度、维氏硬度和电导率均升高,但摩擦系数和磨损率均先减小后增大,其中烧结温度为780℃时,摩擦系数和磨损率同时达到最小值;同时,在设定的烧结温度范围内,载流效率和载流稳定性在很小的范围内波动。在设定工况下,载流摩擦损伤机理主要为磨粒磨损,烧结温度在780℃左右时摩擦损伤较轻,烧结温度超过780℃时所制备的材料,磨损时伴有严重电弧烧蚀现象。综合考虑,780℃为制备铜-石墨复合材料的最优烧结温度。  相似文献   

4.
成分变化对铜-二硫化钼-石墨复合材料电磨损性能的影响   总被引:1,自引:0,他引:1  
采用粉末冶金法在H。保护气氛下制备铜-二硫化钼一石墨复合材料,对其进行物相分析,并通过改变材料中Mo岛与石墨的含量,研究成分变化对复合材料电磨损性能的影响。结果表明:石墨在烧结过程中不参与反应,而MoS2与基体反应生成新相。随着复合材料中MoS2含量的增加和石墨含量的降低,电刷与换向器之间的接触电压降上升,摩擦系数增大,石墨含量最低时磨损量值最大并且出现火花磨损现象。  相似文献   

5.
通过粉末冶金方法制备含FeS的铜基复合材料。采用MM-200型摩擦磨损试验机,以不锈钢为对偶件,分别在干摩擦和油润滑条件下对其摩擦磨损性能进行检测,利用SEM、XPS等技术对磨损表面进行观察和分析。结果表明:干摩擦条件下,材料中的FeS可以逐渐转移、附着在摩擦副表面形成固体润滑膜起减摩、抗粘着作用;油润滑条件下,FeS含量较低时,润滑油膜和FeS固体润滑膜可以起协同润滑作用,随着FeS含量的增多,协同润滑效果越来越明显;FeS含量较高时,铜基复合材料的强度、硬度较低,而且FeS颗粒含有较多微观孔隙,使摩擦副间的润滑油膜稳定性变差而易破裂,复合材料的摩擦磨损性能降低。  相似文献   

6.
为低成本制备高性能石墨/铜复合材料,以酚醛树脂包覆石墨粉、电解铜粉、二氧化硅为原料,采用传统的粉末冶金工艺制备了树脂碳包覆石墨/铜复合材料,对比了其与天然鳞片石墨/铜复合材料和镀铜石墨/铜复合材料组织和性能的差异。发现酚醛树脂包覆可有效保护石墨结构完整性,还原铜表面氧化膜,促进铜的扩散烧结,利于致密化。与天然鳞片石墨/铜复合材料相比,树脂碳包覆石墨/铜复合材料的导电性能、力学性能和摩擦磨损性能提高,其电导率、抗弯强度和硬度分别为9.87 MS.m-1、81 MPa、22 HV,与镀铜石墨/铜复合材料的相当,且摩擦磨损性能略优于镀铜石墨/铜复合材料。  相似文献   

7.
张恩  符蓉  沈长斌  高飞 《表面技术》2020,49(12):170-176
目的 提高石墨与酚醛树脂的界面结合强度,改善酚醛树脂基复合材料的摩擦学性能。方法 用高温浸渗法制备铜包石墨,并制备铜包石墨-酚醛树脂基复合材料。通过摩擦磨损实验,研究铜包石墨对酚醛树脂基复合材料摩擦学性能的影响,并对比相同成分铜/石墨混合填充酚醛树脂基复合材料的摩擦学性能。通过扫描电子显微镜、能谱仪和光学显微镜对摩擦磨损表面进行分析,研究材料摩擦磨损机理。结果 石墨表面经过金属铜处理后,金属铜由分散的聚集态转变为附着态,制备的铜包石墨颗粒整体分散度高、形状好。铜包石墨-酚醛树脂基复合材料中石墨与基体界面结合紧密,保持了酚醛树脂的连续相结构,摩擦磨损表面相对平整,复合材料平均比磨损率为3.98×10?6 mm3/(N.m),瞬时摩擦系数波动幅度小,摩擦磨损机理以粘着磨损为主。相同成分制备的铜/石墨混合填充酚醛树脂基复合材料的界面结合度较差,摩擦磨损表面有较多裂痕,复合材料平均比磨损率为7.80×10?6 mm3/(N.m),瞬时摩擦系数波动幅度大,摩擦磨损机理以磨粒磨损和粘着磨损为主。结论 石墨通过表面金属铜处理,不仅能提高与基体界面结合强度,还能同时有效提高酚醛树脂基复合材料的耐磨性能和摩擦稳定性。  相似文献   

8.
石墨表面金属化对铜基复合材料摩擦学性能的影响   总被引:1,自引:1,他引:1  
利用化学镀技术制备镀铜和镀镍石墨粉,采用粉末冶金复压复烧工艺制备铜基石墨自润滑复合材料,测试了复合材料的摩擦磨损性能,利用X射线衍射、扫描电镜和能谱仪等分析该复合材料的结构、摩擦磨损性能及机理。结果表明:石墨表面铜、镍镀层改善了石墨和铜合金基体界面结合,摩擦过程中所形成的润滑膜与基体粘附性好,显示出更好的润滑减摩效果,摩擦副摩擦因数由0.24降低到0.20,磨损率降低约50%;实验条件下,6%(质量分数)石墨铜基复合材料经历轻微磨损、中等磨损和严重磨损3个磨损过程;而6%镀铜、镀镍石墨铜基复合材料只经历轻微磨损和中等磨损两个磨损过程。  相似文献   

9.
目前针对石墨烯 / 铜基复合材料的研究主要集中在复合材料的制备工艺对材料性能的影响上,对石墨烯 / 铜基复合材料表面摩擦特性影响还缺乏深入探究。采用热压烧结法制备石墨烯 / 铜基复合材料,并利用激光在复合材料表面完成不同尺寸和形态的微织构加工,探究织构化和石墨烯对复合材料表面摩擦特性的影响。测试结果发现:当石墨烯含量为 0.5%时,该复合材料存在一个硬度峰值为 140 HV0.1,比铜合金基体的硬度提高了近 27%。同时具有凹坑织构的复合材料表面摩擦因数及磨痕宽度随表面织构直径的增加而呈现“下降-上升”趋势,其中凹坑直径为 200 μm 时,各项指标达到最小,摩擦因数为 0.377, 磨痕宽度为 231 μm,可以看出合适的织构形状、尺寸以及适当的石墨烯含量使得石墨烯 / 铜基复合材料在减磨性和耐磨性方面有所提高。将激光表面织构化技术与粉末冶金技术相结合,为改善零部件表面摩擦磨损性能提供了一种新的工艺。  相似文献   

10.
基于放电等离子烧结(SPS)技术,采用粉末冶金的方法制备梯度铜碳复合材料和非梯度铜碳复合材料。并在专用销-盘高速摩擦磨损试验机HST-100上进行摩擦磨损试验,研究载流条件下,梯度铜碳复合材料的摩擦磨损性能。结果表明:梯度铜碳复合材料(5 mass%C-10 mass%C)的摩擦系数平均值与同浓度(7.5 mass%C)非梯度铜碳复合材料相差不大,但其动态摩擦系数的波动性明显减小。其摩损率与碳含量7.5 mass%C非梯度铜碳复合材料相比明显降低,与碳含量为10 mass%的铜基复合材料相差不大,磨损率约为7 mg/m。梯度材料的载流效率和载流稳定性和10 mass%C铜基复合材料的相近,分别约为74%和73%。对于非梯度材料:随着石墨含量的增加,铜基复合材料的摩擦系数降低,摩擦系数波动幅度也减小,磨损率降低,载流效率和载流稳定性增加。采用放电等离子烧结(SPS)技术制备的铜基复合材料,磨损过程主要表现为机械磨损和电弧侵蚀。其中电弧侵蚀的行为主要是熔融、喷溅。非梯度复合材料的电弧侵蚀区域分布比较分散,在摩擦出口区域和材料的其他部位也都有存在,而梯度铜基复合材料的电弧烧蚀区域明显减小,仅出现在出口区域。  相似文献   

11.
通过在石墨表面镀铜预处理获得Cu包覆的石墨粉末,并以电解铜粉、鳞片石墨粉和Cu包覆石墨粉末为原料,利用ZT-40-20Y真空热压烧结炉制备了鳞片石墨-铜和镀铜石墨-铜复合材料,随后在不同载荷(5、7、9和11N)下对复合材料进行往复摩擦磨损试验,研究两种复合材料的微观结构、力学性能和不同载荷下的摩擦磨损性能.结果 表明:在相同的制备条件下,镀铜石墨有效地改善了镀铜石墨-铜复合材料中C、Cu之间润湿性的问题,使得其致密度、硬度显著提高;在相同的摩擦条件下,镀铜石墨-铜复合材料平均摩擦系数略有提高、而磨损率显著降低,表现出优良的耐摩擦磨损性能;在不同载荷下的往复摩擦试验中,鳞片石墨-铜复合材料主要磨损机制为磨粒磨损、剥落磨损和粘着磨损;而镀铜石墨-铜复合材料主要的磨损机制为磨粒磨损和少量剥落磨损.  相似文献   

12.
采用热压法制备铜-石墨-二硫化钼复合材料,测试了不同成分下复合材料在空气与真空环境下的摩擦磨损性能。通过对该复合材料力学性能和磨痕表面形貌的分析,探讨其摩擦磨损机理。  相似文献   

13.
温度对铜基自润滑材料减摩耐磨特性的影响   总被引:12,自引:3,他引:12  
采用常规的粉末冶金方法制备了铜基石墨固体自润滑复合材料, 通过基体合金化和改变石墨粒度探讨了复合材料的力学性能和在不同温度条件下的摩擦磨损性能及机理. 实验结果表明: 温度对铜基石墨固体自润滑复合材料的自润滑性能有较大的影响, 在较高温度条件下, 铜基石墨固体自润滑复合材料的耐磨性主要取决于铜合金基体的强度; 选用合适的石墨粒度和多元基体合金化, 可使铜基石墨固体自润滑复合材料在0~500.℃温度条件下保持较好的自润滑特性.  相似文献   

14.
李佳佳  王燕  王福会 《表面技术》2021,50(9):236-243
目的 研究球磨时间对Cu-WS2自润滑复合材料界面状态的影响,同时提高自润滑材料的力学性能和摩擦磨损性能,提出比较优化的Cu和WS2复合材料制备工艺.方法 采用高能球磨与放电等离子体烧结技术,制备铜基自润滑复合材料.采用WDW-100电子万能试验机进行力学实验.采用美国Rtec多功能摩擦磨损试验机进行摩擦学实验.采用XRD和SEM表征不同球磨时间的Cu/WS2复合粉末和烧结后块状复合材料的物相组成和微观结构,并结合EDS表征弯折断口的形貌和磨损形貌,分析球磨时间与复合材料界面状态-力学性能-摩擦磨损性能的内在关系.结果 当球磨时间为30 h时,WS2在铜基体中有较好的结合与分布,材料的综合性能最佳,WS2/Cu复合材料的力学性能良好,平均摩擦系数为0.186,维持在较低水平,且磨损率最低,为7.11×10–5 mm3/(N·m).球磨时间超过30 h时,磨损率不再与力学性能保持一致,而是随着球磨时间的延长而逐渐提高.球磨时间达到50 h时,基体耐磨性下降,磨损率显著提高,达最大值,为10.39×10–5 mm3/(N·m).结论 球磨时间的延长会使WS2在基体中的弥散程度增强,且WS2与Cu基体由于机械互锁式的物理结合增强,使得力学性能随之增强.此外,摩擦磨损性能也能维持在较好水平.但当球磨时间超过30 h时,界面反应加剧,WS2分解为Cu2S,大大减弱了WS2的润滑减摩性能,使得复合材料的摩擦磨损性能降低.  相似文献   

15.
石墨烯具有优异的导电、导热及力学性能,成为理想的金属基复合材料的增强相。首先简要总结了石墨烯增强铜基复合材料的发展概况;其次,介绍了石墨烯-铜复合材料的主要制备方法及主要的石墨烯分散技术;最后,讨论了该材料的潜在应用领域以及其制备的主要困难和将来工作的重点方向。  相似文献   

16.
为了提高铜和石墨烯之间的界面结合强度,采用化学镀的方法使石墨烯表面均匀包裹纳米铜颗粒,然后利用粉末冶金工艺制备铜/石墨烯块体复合材料。本文研究了石墨烯含量对复合材料硬度和致密度的影响,并通过HSR-2M高速往复摩擦磨损试验机研究了铜/石墨烯块体复合材料的摩擦磨损性能。结果表明:石墨烯的加入对铜/石墨烯块体复合材料的硬度有显著的提高,但致密度随石墨烯含量的增加而降低,块体复合材料的摩擦系数和磨损率均低于未增强的纯铜。  相似文献   

17.
石墨表面镀铜对铁基粉末复合材料摩擦性能影响的研究   总被引:1,自引:0,他引:1  
徐峰  王绪然  冯小明  王永善 《铸造技术》2007,28(8):1103-1104
石墨与铜的界面结合及石墨在基体中的分布方式,是影响铁基粉末复合材料摩擦性能的重要因素。用镀铜石墨制备铁基粉末复合材料,并测定了材料的摩擦系数、磨损性能。结果表明石墨经镀铜处理后,使复合材料的摩擦系数有所降低,磨损性能提高20%~30%。  相似文献   

18.
通过放电等离子烧结(SPS)制备纯铜及铜/石墨烯复合材料,其中石墨烯含量为1.0vol%;使用金相显微镜、扫描电子显微镜、天平和摩擦磨损实验机对制备好的材料进行金相分析、SEM观察、密度测试及摩擦磨损实验。结果表明:石墨烯弥散地分布在铜基体内细化了基体组织,并通过改变基体组织的磨损方式(由粘结磨损转变为磨粒磨损),降低了金属基体的摩擦系数,提高了材料的摩擦性能。同时发现,由于石墨烯具有吸氢的特点,引入少量的石墨烯降低了烧结体的致密度。  相似文献   

19.
以石墨烯为增强体,进行了体育器材用石墨烯镁基复合材料的制备,并进行了显微组织、物相组成、力学性能和耐磨损性能的测试。结果表明:该复合材料由Mg相和石墨烯相组成,与商用AZ31镁合金相比,石墨烯镁基复合材料的-20℃的抗拉强度从104MPa增加至527MPa,20℃的抗拉强度从262MPa增加至538MPa,300℃的抗拉强度从83 MPa增加至515 MPa,20℃磨损体积减小89%,150℃磨损体积减小了90%,350℃磨损体积减小了91%。  相似文献   

20.
以化学镀结合粉末冶金法制备石墨烯/铜基复合材料(Cu@r GO/Cu)。为了改善石墨烯(r GO)在铜基体中的分散性以及两者之间的可润湿程度,首先采用化学镀工艺制备镀铜石墨烯(Cu@r GO),并通过SEM和XRD对镀层形貌和物相组成进行检测分析。为了检验Cu@r GO/Cu复合材料的摩擦性能,对Cu@r GO/Cu复合材料摩擦性质进行测试。结果表明:Cu@r GO表面均匀镀覆一层铜并附着粒径约为50 nm的纳米铜颗粒,rGO的褶皱结构以及化学镀的预处理过程有利于纳米铜颗粒长大。呈网状结构的镀铜rGO可以很好的释放掉因摩擦而产生的应力集中,形成C—Cu力转移体系,保护摩擦表面;同时散落在r GO表面的纳米铜颗粒,在摩擦过程中类似于许多"滚动轴承",有效地改善复合材料的摩擦性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号