首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了获得AZ31镁合金轧制织构(0002)基面密度和轧制条件的定量关系,在压下量为20%~40%、轧制温度为300~500°C的条件下对AZ31镁合金进行热轧试验。采用板材中嵌入镁合金圆柱的方法计算板材厚度方向的剪切应变和等效应变量。利用光学金相显微镜、X射线衍射和EBSD技术检测轧制板材的显微组织、表面层和中心层(0002)基面织构密度。定量分析应变、动态再结晶和孪晶对AZ31镁合金轧制板材织构的影响。结果表明:在相同应变下,轧制开始温度为400°C时,(0002)基面织构极密度最高,并得到了(0002)基面织构极密度随温度和应变的变化规律。  相似文献   

2.
以商用热轧AZ31镁合金板材为研究对象,室温下通过沿轧制方向(Rolling Direction)、轧板法向(Normal Direction)以及RD-ND 3种压缩变形试验,研究了AZ31镁合金在压缩变形过程中的孪晶、解孪晶现象及其对力学性能的影响。结果表明,沿RD压缩后晶粒取向发生变化,变形后的组织中出现了明显的平行带状和透镜状孪晶带。沿ND压缩时,{1012}拉伸孪晶没有发生,且无论压缩变形量大小,金相组织中均无孪晶出现,塑性变形主要依靠滑移产生。解孪晶时屈服应力下降明显,且完全解孪晶所需应变比孪晶小。  相似文献   

3.
AZ31镁合金挤压轧制过程微观织构演变   总被引:1,自引:0,他引:1  
利用光学显微分析和电子背散射衍射(Electron Back Scatter Diffraction,简称EBSD)技术,研究了AZ31镁合金在挤压开坯、轧制及退火过程中微观组织和织构的演变规律。结果表明:挤压后板材呈现出特殊的纤维织构,基面平行于挤压方向,在随后的轧制过程中纤维织构逐渐向基面织构转化,且随变形量的增加,基面织构逐渐增强,最终形成了强烈的基面板织构。  相似文献   

4.
为了获得基面织构强度弱化、室温埃里克森值高的镁合金板材的热轧工艺,采用异步轧制研究轧制温度为250?450℃、道次压下率为15%?35%、异速比为1:1.5时轧制工艺对镁合金宏观织构和室温成形性能的影响,并以此设计一组轧制工艺,使轧制后合金织构强度明显弱化,室温埃里克森值得到明显提高。结果表明:提高轧制温度、减小道次压下率可以有效地弱化基面织构,提高镁合金室温成形性能。但是在450℃、道次压下率为5%时,轧制后板材晶粒粗大,成形能力较低。经轧制温度为450℃、道次压下率为10%的工艺轧制后板材具有优良的室温成形性能,即室温埃里克森值为5.35 mm,此时基面织构强度为9852。  相似文献   

5.
采用异步轧制(AR)工艺和同步轧制(NR)工艺制备了AZ31镁合金板材,分析了AZ31镁合金板材的组织性能和力学性能,研究了轧制过程中孪晶组织和织构的演变规律,以及异步轧制工艺参数对镁合金板材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,异步轧制与同步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使异步轧制与同步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;当压下量达到24%时孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替性变化,异步轧制板材在压下量达到24%时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到16.3%。  相似文献   

6.
通过光学显微镜、背散射电子衍射分析(EBSD)和室温拉伸试验研究了多道次连续轧制AZ31镁合金板材经200~400℃不同温度退火1 h后晶粒尺寸和微观织构的演化及其与力学性能的关系。结果表明:轧制板材经250℃×1 h退火后,静态再结晶几乎完成,晶粒细小均匀,平均晶粒尺寸约5.5μm,综合力学性能良好,抗拉强度和断后伸长率分别达到261 MPa和26.7%;当退火温度不高于350℃时,退火态板材基面织构较轧态低且差别较小。随退火温度升高,晶粒缓慢长大,晶界取向角分布由10°和30°双峰连续分布转变为30°单峰连续分布。此时,抗拉强度主要与晶粒尺寸有关。当退火温度达到400℃时,再结晶晶粒发生异常长大,基面织构急剧增强,晶界取向角呈离散分布,导致抗拉强度增加,而伸长率显著降低。  相似文献   

7.
挤压态AZ31合金在室温下沿挤压方向进行压缩变形,合金中产生大量的拉伸孪晶。综合分析了孪晶对的斯密特因子(SF)和应变兼容因子(m_f),其中孪晶对包括相连的孪晶对和非相连的孪晶对。结果表明:相连的孪晶对优先在取向差约为25°的相邻晶粒的晶界上形核。大约88%的相连孪晶对具有很高的斯密特因子,大约76%的相连孪晶对具有很高的应变兼容因子。低斯密特因子的孪晶对的发生能够通过高应变兼容因子进行解释。大约23%的非相连孪晶对的应变兼容因子接近于0。  相似文献   

8.
对AZ31镁合金轧制板材进行变形方向依次为轧向(RD)、横向(TD)、轧向和横向的变路径压缩实验,研究变形过程中的力学性能,并采用电子背散射衍射(EBSD)观察上述变形过程中晶粒取向变化,分析孪晶变体的启动情况。结果表明:在变路径压缩过程中,各路径压缩过程依次对应拉伸孪晶、二次孪晶、解孪晶和拉伸孪晶的微观变形机制,首次变形所产生的预应变提高后续变形中孪晶形核启动力,使后续变形过程的屈服强度大幅增加。二次孪晶的启动遵循Schmid定律,孪晶变体启动的选择性倾向明显,由t1或t5变体来完成二次孪晶。  相似文献   

9.
采用同步轧制(NR)和异步轧制(AR)工艺对AZ31镁合金挤压板材进行了轧制,研究了轧制过程中组织和织构的演化,以及总压下量和异步比对轧材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,同步轧制与异步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。轧制过程中,在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使同步轧制与异步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;而当压下量达到24%时,孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替变化;异步轧制板材在压下量达到24%左右时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到0.163。  相似文献   

10.
采用电子背散射衍射(EBSD)原位跟踪实验方法研究了AZ31镁合金压缩变形微观织构演变规律。在温度为170℃条件下,研究了AZ31镁合金轧制板材经过3次连续真空压缩(变形量分别为11%、17%和23%)时,其相同观察区域的微观织构演变。研究结果表明,AZ31镁合金轧制板材的微观织构为典型的(0001)基面织构。当温度为170℃、变形量为11%时,晶粒取向发生显著改变,大部分晶粒都发生了完全孪生,只有少数发生部分孪生,原始的基面轧制织构大幅减弱,孪生变体符合60°/1010和86.3°/1210取向关系。随着变形量的增加,滑移开始启动,孪晶晶界减少,织构变化不明显。压缩变形过程微观织构演变机理主要以拉伸孪生为主,基本上没有压缩孪生出现。  相似文献   

11.
对轧制下压方向平行和垂直晶粒c轴的两类板材进行150℃轧制(5%下压量)后,利用背散射电子衍射分析(EBSD)研究了轧制试样中不同类型的孪晶组织对静态再结晶的晶粒形核、微观组织及织构的演变的影响。结果表明:含有大量{1011-}-{1012-}双孪晶的样品中,二次孪生有效促进再结晶形核,显著细化晶粒。再结晶晶粒取向规律性不强,有效削弱基面织构。而含有大量{1012-}拉伸孪晶的样品,拉伸孪晶不能有效促进再结晶形核。退火过程中基体不断长大,当再结晶驱动力足够大时,基体会吞并周围拉伸孪晶,同时诱发织构改变,基体取向的织构逐渐增强,拉伸孪晶取向的织构逐步减弱。  相似文献   

12.
利用电子背散射衍射(EBSD)取向成像技术,分析AZ31镁合金热挤压棒材和轧制薄板的织构特点;对具有不同初始织构的镁合金棒材和薄板进行力学性能分析,并从织构角度分析棒材的拉压不对称性和薄板的力学各向异性。结果表明:挤压镁合金棒材具有主要以(0001)基面平行于挤压方向的基面纤维织构,存在严重的拉压不对称性,其原因在于压缩时的主要变形方式为{1012}1011孪生;热轧镁合金薄板具有主要以(0001)基面平行于轧面的强板织构,具有显著的力学性能各向异性,其原因在于拉伸时不同方向的基面滑移Schmid因子不同。  相似文献   

13.
AZ31镁合金板材双向循环弯曲的孪晶组织及织构   总被引:1,自引:0,他引:1  
采用等温双向循环弯曲工艺(bidirectional cyclic bending technology,BCBT)改善了AZ31镁合金板材的微观组织、织构和力学性能。循环弯曲变形能够产生压缩变形与拉伸变形的交替变化,使镁合金材料发生压缩变形→孪晶组织形成→发生动态再结晶→孪晶消失→晶粒细化的组织演变过程,形成分布均匀的细小的晶粒组织,改善了镁合金材料性能。AZ31镁合金板材在变形温度为483 K时经过3个道次的等温双向循环弯曲变形后,基面织构得到明显弱化,织构强度由原始9.59降低到变形后3.54,平均晶粒尺寸为12.2μm。在变形温度443 K,经过1个道次变形后,AZ31镁合金板材的抗拉强度为325 MPa,屈服强度为225 MPa。与原始坯料力能参数相比,抗拉强度提高了19%,屈服强度提高了28%。当变形温度483 K循环变形3道次时,材料的伸长率为17.1%,比原始材料提高了42%。  相似文献   

14.
对AZ31镁合金进行4种不同路径的非对称压下量轧制,研究其对材料显微组织演化和力学性能的影响。路径A为连续轧制,路径B和C在轧制时轧板分别沿轧向和法向旋转180°,路径D为单向轧制。采用有限元法分析轧板的应变状态,并通过金相显微镜、X射线衍射和电子背散射衍射技术观察分析板材的显微组织和织构特征,另外利用拉伸试验测试材料的力学性能。结果表明,路径D轧制时所产生的等效应变值最大;与其他试样相比,试样D的组织较均匀,由细小的晶粒组成,且其基面织构较弱并发生了一定倾转;因此,试样D表现出较优异的力学性能,这表明路径D能够有效地提高AZ31板材的强度和塑性。  相似文献   

15.
利用X射线衍射(XRD)方法测量了不同轧制状态,即不同变形温度和变形量条件下AZ31镁合金板材织构的变化特征。结果表明,经过轧制之后的AZ31镁合金板材形成强烈的基面织构;在250℃~400℃范围内,变形温度的升高、变形量的增大都会促进镁合金板材棱柱面、锥面等非基面滑移系的启动,从而影响各织构组分的锋锐程度和板材各向异性的强弱。随着变形温度的升高,镁合金板材的各向异性减弱;变形量的增大,镁合金板材的各向异性增强。  相似文献   

16.
AZ31镁合金在不同轧制方式下的织构演变   总被引:2,自引:0,他引:2  
采用单向轧制和交叉轧制对AZ31镁合金热轧板进行冷轧,研究不同轧制方式对织构演变的影响.结果表明,单向冷轧的形变量超过15.37%,交叉冷轧的形变量超过5.79%,出现切变带之后断裂.在相同变形量下,单向轧制的{0001}面各织构组分强度趋向均匀分布;交叉轧制的{0001}面各织构组分向{0001}<2(1) (1)0>聚集增强.随形变量增加,单向轧制的{0001}<10(1)0>和{0001}<2(1) (1)0>织构强度呈波动性增加;交叉轧制的{0001}<10(1)0>织构稍有增强后开始减弱,而{0001}<2(1) (1)0>织构强度呈连续性增加.  相似文献   

17.
通过室温包套挤压,使镁合金产生不同应变量的预应变,从而获得具有不同孪晶比例的组织,并对预应变合金的拉伸及压缩性能进行了测试。结果表明:随着预应变变形量的增加,组织中的{1011}压缩孪晶的数量越来越多,材料的拉伸和压缩性能都明显提高,而且预应变样品拉伸过程中的屈服强度明显高于压缩过程中的屈服强度。这表明由于预应变的施加,在压缩过程中产生了包辛格效应,使材料在反向压缩过程中的屈服强度明显降低;另一方面,计算所得包辛格效应的能量参数(BEP)值随着应变量的增加而逐渐减小,表明随着应变量增加包辛格效应逐渐减弱。  相似文献   

18.
《铸造技术》2016,(2):343-345
采用普通轧制、异步轧制、交叉轧制和等径角轧制工艺,制备了具有良好组织状态的AZ31镁合金板材,并对这几种不同轧制工艺制备的AZ31镁合金板材的冲压性能进行了研究,分别考察不同轧制工艺下的镁合金板材的应变硬化指数、塑性应变比和杯突实验Erichsen值,确定不同轧制方式对镁合金冲压性能的影响。结果表明,等径角轧制所制备AZ31镁合金板材的Erichsen值最大,表现出了最优的室温成形性能。  相似文献   

19.
采用分离式霍普金森压杆(SHPB)测试预孪晶AZ31镁合金板材在应变速率分别约为800、1200和1600 s-1时的动态真应力-真应变曲线.通过自编程软件及电子背散射衍射(EBSD)技术分析预孪晶试样在高应变速率前后微观组织和织构的演变.结果表明:沿横向(TD)预压缩后再沿着轧制方向(RD)复合预压缩可促进AZ31镁...  相似文献   

20.
林雄萍 《热加工工艺》2014,(18):175-177,181
采用不同工艺对细晶AZ31镁合金进行热处理,并进行了力学性能的测试与对比分析。结果表明,分级均匀化处理和深冷处理,有利于提高细晶AZ31镁合金的伸长率、抗拉强度和冲击吸收功。与常规均匀化处理相比,分级均匀化处理后深冷处理将使细晶AZ31镁合金的室温伸长率增加7.6%,室温抗拉强度增加52 MPa;室温、0℃和-20℃冲击吸收功分别增加14.6 J、13.6 J和13.6 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号