首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boron suboxide thin films have been deposited on Si(100) substrates by reactive RF magnetron sputtering of a sintered B target in an Ar/O2 atmosphere. Elastic recoil detection analysis was applied to determine the film composition and density. Film structure was studied by X-ray diffraction and transmission electron microscopy. The elastic modulus, measured by nanoindentation, was found to decrease as the film density decreased. The relationship was affected by tuning the negative substrate bias potential and the substrate temperature during film growth. A decrease in film density, by a factor of 1.55, caused an elastic modulus reduction by a factor of 4.5, most likely due to formation of nano-pores containing Ar. It appears evident that the large scattering in the published data on elastic properties of films with identical chemical composition can readily be understood by density variations. These results are important for understanding the elastic properties of boron suboxide, but may also be qualitatively relevant for other B-based material systems. Received: 22 February 2002 / Accepted: 11 April 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +46-13/288-918, E-mail: denmu@ifm.liu.se  相似文献   

2.
We study the technique of nanoindentation hardness measurement applied to extremely hard and elastic thin films. We do the study with the aid of Hertz’s solutions for elastic contacts. The effect of different apical angles in ideally sharp conical diamond indenters is analyzed. In addition, the blunt tip shape of practical diamond indenters is discussed. The area function of the tip of real indenters is deduced from experimental nanoindentation measurements performed with these indenters on fused quartz. Triangular-base pyramidal indenters with Berkovich and cube corner geometries are considered. Theoretical hardness values applying Hertz’s and Oliver and Pharr’s methods of analysis are obtained and compared with the experimental data deduced from nanoindentation measurements performed on very hard and elastic ta-C films. The theoretical analysis shows a necessary dependence of the calculated hardness values with the apical angle of the indenter in totally elastic materials and to some extent in elastoplastic materials. Moreover, when the indenter tip is blunt or when there are inaccuracies in the measured area function of the indenter tip, hardness values decrease for very small penetration depths. Besides, in these films, because of their very small thickness, measured hardness values also decrease for measurements with penetration depths larger than a fraction of film thickness, due to the effects of the softer substrate. Received: 13 June 2000 / Accepted: 21 June 2000 / Published online: 5 October 2000  相似文献   

3.
Phonon spectroscopy measurements were used to examine the scattering of high frequency phonons (300 GHz-1 THz) in amorphous materials. The experiments were done with the use of time and frequency resolved measurements of the phonon transmission behaviour through amorphous single films of different thicknesses. The typical film thicknesses were of the order of 10 nm. In contrast to the pure amorphous semiconductors Si and Ge our experiments show inelastic phonon scattering processes in the case of SiO2 and SiH. This inelastic phonon scattering also occurs when the pure semiconductors Si and Ge are prepared in an O2 or H2 atmosphere, but is missing when the preparation process is done in an N2 atmosphere. In films of the pure semiconductors a-Si and a-Ge we only found evidence to elastic scattering processes. In further experiments at heated a-SiH samples we could examine the atomical bonded hydrogen to be the center of the inelastic phonon scattering.The measurements and investigations described in this work were done in time of preparing a thesis at: Physikalisches Institut Teil 1, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany  相似文献   

4.
An experimental method for determining the real-time depth of laser-drilled holes is presented. The proposed method involves detecting the laser-induced optoacoustic waves generated during the interaction of the laser beam with the material. Our optodynamic study involved measuring the propagation times of these waves as they traveled through the material and analyzing their temporal behavior during the drilling process. The experimental observations revealed an exponential relationship between the propagation time of the longitudinal stress wave and the number of consecutive laser pulses. Received: 25 October 2001 / Accepted: 27 October 2001 / Published online: 20 December 2001  相似文献   

5.
An unconventional Brillouin-spectroscopic technique is proposed to determine elastic stiffness tensor coefficients of molecular crystals. With 90A Brillouin measurements on thin monodomains of melt-crystallized films (about 30 μm thickness) the need to grow large single crystals is avoided. Measurements on sym-difluorotetrachloroethane and perfluoroeicosane are presented.  相似文献   

6.
This paper proposes a three-dimensional system for modelling stress in thin films deposited on thick substrates deformed as a small cylindrical surface by means of the minimization of the deformation energy. The results show the validity limits of the well-established Stoney equation and indicate the necessity of a correction term for substrates with Poisson ratio (νs) in the range of 0.25 < νs ≤ 0.4.  相似文献   

7.
Kawashima K 《Ultrasonics》2005,43(3):135-144
In this paper there is given a method to predict ultrasonic wave velocity variations along a wave path in the through-thickness direction in a plate from thickness resonance spectra. Thickness resonance spectra are numerically calculated and two simple rules used to predict the entire ultrasonic wave velocity variation are derived. In the calculation, the wave path is assumed to be straight along the thickness direction and the velocity variation is assumed to be either as a parabolic curve dependence or a linear dependence with respect to the distance from the surface and to be symmetric with respect to the plate center. To see if the numerical calculation method is reliable, thickness resonance frequencies of a sample with three-layers were measured by EMAT (electromagnetic acoustic transducer) with a good agreement between the measured and the calculated frequencies. This method can be applied to the ultrasonic measurement of material characteristics, internal stress or various other properties of plate materials.  相似文献   

8.
Laux D  Lévêque G  Camara VC 《Ultrasonics》2009,49(2):159-392
Ultrasonic longitudinal velocity and attenuation were measured for aqueous solutions of sorbitol at approximately 5 MHz. For pure sorbitol, the ultrasonic velocity reached 3200 m s−1, consequently leading to a high acoustical impedance (around 5 × 10Rayleigh) and good matching between the ultrasonic transducers and material samples.  相似文献   

9.
Dynamic viscoelastic properties (G′ and G′′), ultrasonic shear velocity and attenuation were measured for aqueous solutions of sorbitol at 5 MHz. For pure sorbitol, the shear ultrasonic velocity reached 1470 m s−1 with a density of 1500 kg m−3, consequently leading to a high acoustical impedance compared with “classical” polymers (polystyrene, nylon, polyethylene, Teflon, etc.). We demonstrate that this surprisingly high shear ultrasonic velocity for a viscoelastic material was due to the fact that the glass transition begins at a concentration above 85% of sorbitol in water. Hence, pure sorbitol is an ideal coupling material for high frequency shear experiments.  相似文献   

10.
GeTi thin film has been found to have the reversible resistance switching property in our previous work. In this paper, the microstructure of this material with a given composition was investigated. The film was synthesized by magnetron sputtering and treated by the rapid temperature process. The results indicate a coexist status of amorphous and polycrystalline states in the as-deposited GeTi film, and the grains in the film are extremely fine. Furthermore, not until the film annealed at 600 °C, can the polycrystalline state be detected by X-ray diffraction. Based on the morphological analysis, the sputtered GeTi has the column growth tendency, and the column structure vanishes with the temperature increasing. The microstructure and thermal property analysis indicate that GeTi does not undergo evident phase change process during the annealing process, which makes the switching mechanism of GeTi different from that of chalcogenide memory material, the most widely used phase change memory material.  相似文献   

11.
Thin film composition spreads of Mg-Ni were deposited by co-sputtering on micromachined Si-cantilevers. The investigated compositions range from about Mg60Ni40 to about Mg80Ni20. Structural properties as well as mechanical stress before and after hydrogenation were measured with X-ray diffraction (XRD) and laser profilometry, respectively. The composition spreads were hydrogenated in a special pressure vessel, which allows measuring optically the hydrogen-induced deflection (stress-change) of 16 cantilevers as a function of hydrogen pressure and/or temperature. It was found that the hydrogen-induced stress is correlated with the composition and microstructure of the films. Highest hydrogen-induced stress changes were found for compositions close to the crystalline Mg2Ni phase.  相似文献   

12.
Residual stresses are inevitably generated within the multi-layered film structures due to the mismatches of material properties between the adjacent layers. Using the force and moment equilibrium conditions and beam bending theory, the residual stresses in each layer can be predicted and expressed as σi(z) = Ei[?′ + K(z + δ)], where Ei is the elastic modulus of the layer, ?′ the strain due to the in-plane force resulting from the misfit strain, K(z + δ) characterizes the bending contribution. For a bilayer system, the expression of the residual stress in the film is relatively simple. If the each layer thickness is much less than the substrate thickness, Stoney's equation will be derived. The assumption of a constant elastic modulus throughout the system is only applicable when the film and the substrate thickness ratio is less than 0.1. Specific analyses are performed for the thermal stresses in ZrO2/NiCoCrAlY thermal barrier coatings (TBCs) to illustrate the implementation of the analytical model. Moreover, the effects of single interlayer and graded interlayer inserted between the metallic layer and the ceramic layer on the residual stress distributions in TBCs are investigated. Additionally, the zero-deflection design is also discussed for typically duplex-layer TBC system.  相似文献   

13.
The microstructure of vanadium oxide nanotubes (VONTs) have been characterized using FTIR spectroscopy and Raman spectroscopy. The temperature effects on the VONTs were studies by changing the laser irradiation power and thermal annealing temperature in air. Raman spectroscopy studies showed that the VONTs could be decomposed even at low laser power irradiation. Also, together with scanning electron microscopy, it was found that thermal annealing in air could lead to the collapse of the tubular structure and convert the nanotubes into V2O5 nanoparticle. It was found that the thermal stability of VONTs was relatively low and the tubular morphology was destroyed at temperatures higher than 300 °C. The spectroscopic analyses showed that the Raman signature of the VONTs could be established for probing tubular structure.  相似文献   

14.
We describe a technique for extending the utility of the real-time Impulsive Stimulated Thermal Scattering (ISTS) method for thin film characterization. Using weakly absorbed excitation pulses, we show how to selectively drive acoustic waveguide modes that are unobservable when strongly absorbed pulses are used. The ability to excite and monitor these modes is important because it allows for a significant increase in the experimental sensitivity to the film longitudinal velocity. This arrangement also greatly simplifies determination of the in-plane thermal diffusivity. The technique is illustrated through study of unsupported polyimide films with six different thicknesses.  相似文献   

15.
We have developed a high-throughput thermoelectric screening tool for the study of combinatorial thin films. This tool consists of a probe to measure resistance and Seebeck coefficient on an automated translation stage. A thin film library of the (Ca1−xySrxLay)3Co4O9 ternary system has been fabricated on a Si (1 0 0) substrate, using combinatorial pulsed laser deposition by the natural-composition-spread method. We have demonstrated successful mapping of the resistance and Seebeck coefficient of this film library. The mapping indicates that the substitution of La for Ca results in an increase of both resistance and Seebeck coefficient, and that of Sr results in a decrease of resistance. The screening tool allows us to measure 1080 data points in 6 h.  相似文献   

16.
Jing Li  Zhengyou Liu 《Physics letters. A》2008,372(21):3861-3867
By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves.  相似文献   

17.
Permalloy (Py) films were deposited on Si(111) or Corning 0211 glass substrates. There were two deposition temperatures: T s=room temperature (RT) and T s=270°C. The film thickness (t f) ranges from 10 to 130 nm. The crystal structure properties of the films were studied by X-ray diffraction and transmission electron microscopy. Mechanical properties (including Young’s modulus E f and hardness H f) of each film were measured by the nanoindentation (NI) technique. E f of the Py/Si(111) films was checked again by the laser induced surface acoustic wave (LA-SAW) technique. It was found that the NI technique is best suited for the measurements of E f and H f, but only when the sample belongs to the (soft film)/(soft substrate) system, such as the Py/glass film. For the (soft film)/(hard substrate) system, such as the Py/Si(111) film, the NI technique often provides higher values of E f and H f than expected. The anomalous phenomenon, associated with the NI technique may be related to the anisotropic crystal structures in the Py films on different kinds of substrates. From this study, we conclude that [E f of Py/Si(111)]>[E f of Py/glass] and [H f of Py/Si(111)]>[H f of Py/glass]. The good mechanical properties of the Py/Si(111) film make it a better candidate for recording head applications.  相似文献   

18.
This paper describes the application of continuous-wave (CW) and tone-burst (TB) vibro-acoustography (VA) experiments for imaging a flawed composite plate. For both modes, the ultrasound frequency is set at f1 = 3 MHz and f2 = 3 MHz + ∣Δf∣. The plate was placed at the focus of the transducer and scanned point-by-point over an area of 60 mm by 50 mm on its frontal face with an increment step equal to 0.25 mm/pixel. The resulting acoustic emission amplitude at ∣Δ f∣ is recorded. For the CW mode the difference frequency was set at ∣Δf∣ = 12.9 kHz. For the TB mode, the burst-emitted signal was 100 μs long at a pulse repetition frequency (PRF) of 100 Hz corresponding to bursts of 300 cycles at 3 MHz, and the difference frequency was set at ∣Δf∣ = 44 kHz. The resulting VA images readily show the shape of the flaws. The images also reveal considerable detail of internal substructures such as the fibers used to reinforce the plate. However, the CW VA image shows an artifact caused by the effect of ultrasound standing waves established between the plate and the concave surface of the transducer, resulting in masking some of the flaws. On the other hand, the TB-VA image is free from such artifact. Despite some advantages of using TB-VA, there are some limitations related to this mode. Advantages and limitations of using the two modes are discussed.  相似文献   

19.
In this work, a nanocone ZnO thin film was prepared by electron beam evaporation on a Si (1 0 0) substrate. The structural properties of the film were investigated by X-ray diffraction (XRD), atomic force microscopy and laser Raman scattering, respectively. The aging effect of the nanocone ZnO thin film was studied by photoluminescence spectra. The structural analyses show that the prepared ZnO thin film has a hexagonal wurtzite structure and is preferentially oriented along the c-axis perpendicular to the substrate surface. The photoluminescence spectra show that with the increase of aging time, the green emission of the nanocone ZnO thin film gradually decreases while the ultraviolet emission somewhat increases. The reason for this phenomenon is likely that the green-emission-related oxygen vacancies in the film are gradually filled up. The Raman scattering analyses also suggest that the intensity of the Raman peak related to oxygen vacancies in the nanocone ZnO thin film declines after the film is aged in air for a year. Therefore, the authors think the green emission is mainly connected with oxygen vacancy defects.  相似文献   

20.
A pulse-echo ultrasonic method is presented to measure elastic parameter variations during thermal loading with high accuracy. Using a dry coupling configuration dedicated to high temperature investigation, this technique has been applied on 6061-T6 aluminium samples up to 220 °C. Experimental settings are described to assess the measurement reproducibility estimated at a value of 0.2%. Consequently, the anisotropy of this aluminium between the rolling direction and two orthogonal axes has been clearly detected and also measured versus temperature. As regards the temperature dependence of these elastic parameters, these results are compared with the estimations of the Young’s modulus obtained during mechanical tests in conditions of low cycle fatigue (LCF). The same linear variation versus temperature is found but with a shift of 7 GPa. This difference has been classically attributed to systematic experimental error sources and to the distinction existing between dynamic and static elastic modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号