首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
陈敏  唐泽勋  冯泽  商士波 《电池》2022,(3):293-296
镍钴锰三元材料在高电压下的循环稳定性有待提高。采用高温固相法制备Zr、Ti共掺杂和Al2O3包覆的单晶正极材料LiNi0.6Co0.2Mn0.2O2。用XRD、SEM和恒流充放电测试,分析材料的结构、形貌及电化学性能。材料的层状结构较好。扣式电池以0.20 C在3.00~4.40 V循环,放电比容量可达185.8 mAh/g;软包装电池以1.00 C在3.00~4.35 V循环1 500次,容量保持率为93.2%。  相似文献   

2.
分别以LiMn2O4、LiNi0.6Co0.2Mn0.2O2和Li4Ti5O12为正负极活性物质,制备钛酸锂软包电池。研究了两种正极材料对钛酸锂电池性能的影响,结果表明正极材料的工作电位对电池大倍率放电和充电的性能有较大影响,正极材料的表面包覆有利于抑制电解液在高温55℃的分解改善电池寿命。LiMn2O4/Li4Ti5O12电池10 C放电容量达到了标称容量的95%;LiNi0.6Co0.2Mn0.2O2/Li4Ti5O12电池10 C充电恒流比达到了92%,其55℃、2 C循环1 200次后容量保持率在80.3%以上。  相似文献   

3.
采用Ni0.88Co0.10Mn0.02(OH)2前驱体,LiOH·H2O为锂源,加入适量的硼酸和ZrO2,分别在810、820和830℃条件下进行烧结,制备了Zr和B共掺杂型LiNi0.88Co0.10Mn0.02O2单晶材料。对其进行了X射线衍射仪(XRD)、扫描电子显微镜(SEM)、充放电比容量、倍率性能、循环性能和差示扫描量热(DSC)等测试。结果显示,Zr和B共掺杂可改善LiNi0.88Co0.10Mn0.02O2单晶材料的倍率性能、循环性能以及材料的热稳定性。在820℃烧结得到样品NCM-820,其比容量为198.5 mAh/g,25℃循环50次的容量保持率为96.37%,45℃循环40次容量保持率为94.13%,材料热分解温度从231.8℃提升到了240.4℃。  相似文献   

4.
使用Hummers法得到氧化石墨烯,再通过还原氧化石墨烯制备石墨烯。使用高温固相法制备LiNi0.8Co0.1Mn0.1O2正极材料,将石墨烯加入乙醇溶液中,与增稠分散剂羧甲基纤维素钠(CMC)混合得到石墨烯溶液。利用液相自聚集法将石墨烯溶液微量包覆在LiNi0.8Co0.1Mn0.1O2表面。通过SEM、XRD以及电化学测试系统对石墨烯/LiNi0.8Co0.1Mn0.1O2复合材料进行表征和测试。结果表明,0.8%-石墨烯/LiNi0.8Co0.1Mn0.1O2复合材料性能最佳,首次充电比容量最大值达到222.85 mAh/g,首次充放电比容量最大值达到208.93 mAh/g,库仑效率为93.75%。  相似文献   

5.
为提高LiNi0.8Co0.1Mn0.1O2(NCM811)材料的循环稳定性,以氧化铝(Al2O3)为电解液处理剂,用一种简单的方法制备功能性电解液,研究对NCM材料的性能影响。与原始NCM相比,在电解液中添加0.50%Al2O3的NCM以0.5 C在2.75~4.30 V循环200次的容量衰减更慢,容量保持率为80.33%,同时电荷转移电阻(Rct)增加趋势较低。SEM分析表明,正极表面仍可看出清晰的颗粒轮廓与层状结构。  相似文献   

6.
为进一步优化锂离子电池的导电网络,研究炭黑、纳米碳纤维和碳纳米管(CNT)等3种导电剂复合对LiNi0.5Co0.2Mn0.3O2正极电化学性能的影响。二元导电剂的复合要好于单一导电剂,三元导电剂的复合要好于二元导电剂。当总导电剂质量分数为1.5%时,在3.0~4.2 V的充放电实验发现:炭黑、纳米碳纤维和CNT的质量分数分别为0.9%、0.4%和0.2%时,具有最佳的55℃高温循环性能,以1.0 C循环85次的容量保持率为56.81%;当质量分数分别为0.9%、0.3%和0.3%时,三元复合导电剂具有最小的电荷传递电阻2.97Ω,相较质量分数为1.5%的单一炭黑,0.5 C循环2次的比容量提升了5.26 mAh/g, 10.0 C高倍率放电性能提升了15.76%,1.0 C常温循环容量保持率提升了26.66%。  相似文献   

7.
潘桂玲 《电池》2023,(2):127-131
四氧化三钴(Co3O4)作为锂离子电池负极材料,具有较高的理论比容量,其颗粒形貌与大小对电化学储锂性能有明显影响。采用电解法和沉淀法分别制备颗粒状、片层状和八面体状Co3O4。用SEM和XRD对制备的Co3O4进行形貌和结构分析,并研究不同形貌Co3O4作为负极材料的电化学储锂性能。八面体状Co3O4具有良好的电化学储锂性能和循环稳定性,样品以0.2 C在0~3.0 V循环的首次放电比容量达1 162.2 mAh/g;经过100次循环后,放电容量保持率为73%。八面体状Co3O4具有最小的表面能,有利于形成均匀致密的固体电解质相界面(SEI)膜,提升材料的储锂性能。  相似文献   

8.
倪祥祥  胡习之  李长玉 《电池》2023,(3):248-251
五氧化二钒(V2O5)作为正极材料,在锂离子电池中存在循环不稳定、倍率性能差等缺点,且锂化机理研究有限,作为负极材料的研究更是缺乏。采用聚乙烯醇(PVA)辅助软模板溶剂热法制备多孔性V2O5(PVO),所得PVO的结晶度高,为相互连接的V2O5纳米棒组成的多孔结构。使用PVO为负极材料制备的半电池,容量和稳定性高,倍率性能较好,在放电过程中产生了新化合物,以0.2 A/g的电流在0.02~3.10 V充放电,第500次循环的放电比容量可达762.1 mAh/g。制备的LiFePO4/PVO全电池以0.1 A/g的电流在1.5~3.5 V充放电,第100次循环的放电比容量为176.8 mAh/g。  相似文献   

9.
曾昭锋 《电源技术》2023,(6):772-775
采用一步水热法和煅烧法制备了Co3O4电极材料,通过物相、形貌表征和电化学测试发现,制备的Co3O4具有羽毛状二维网络结构,可以增加与电解液的接触面积,增加了活性位点,提高了电化学性能;制备的Co3O4电极材料的比电容达到了679.51 F/g,其循环伏安测试曲线以及恒电流充放电测试曲线对称性完美,材料可逆性良好,材料的阻抗较低;在1 A/g电流密度下进行恒电流充放电测试,3 000次循环后,其比电容仍然能保持初始值的79.3%,电化学稳定性良好;Co3O4电极材料具有优异的电化学性能,在超级电容器电极应用方面具有广阔的应用前景。  相似文献   

10.
通过溶胶-凝胶法合成正极材料LiNi0.5Mn0.5O2,为了提高材料LiNi0.5Mn0.5O2的高倍率放电性能,采用Mg进行掺杂。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电对材料的结构和形貌及电化学性能进行了研究。结果表明少量Mg的掺杂未影响到LiNi0.5Mn0.5O2的晶体结构,但改善了其电化学性能,其中,当Mg的掺杂量为5%(摩尔分数)时,材料具有更好的电化学性能,4 C放电时,首次放电比容量达到118 m Ah/g,且循环性能良好。  相似文献   

11.
富镍层状氧化物LiNixCoyMnzO2(0.6≤x<1)是用于生产高能量密度和高工作电压电池的有前途的锂离子电池正极材料,但其较差的循环性能严重限制了其商业应用。将具有二维层状结构的Ni-Al层状双氢氧化物(NiAl-LDH)作为涂层材料,通过简单的液相包覆工艺将NiAl-LDH涂覆于LiNi0.8Co0.1Mn0.1O2上,以显著提高LiNi0.8Co0.1Mn0.1O2的结构稳定性和电化学性能。NiAl-LDH涂层的Al3+在高温烧结过程中向内扩散,在材料的二次粒子表面形成均匀的保护层,其可以抑制电解液对正极材料的侵蚀。Al3+迁移到过渡金属层,减少了锂/镍的混合,从而增强了材料的结构稳定性。改性材料在1 C电流密度下循环200次后容量保持率从原始材料的70.8%提高到8...  相似文献   

12.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

13.
冯欣  韩恩山  朱令之  李玲 《电源技术》2012,36(3):317-320,344
以CH3COOLi·2 H2O和Ti(OC4H9)4为原料,C6H15NO3为络合剂,CH3CH2OH为溶剂,采用溶胶-凝胶法制备Li4Ti5O12材料,并且复合掺杂Mg、Mn、Ni、Co四种金属。采用X射线衍射(XRD)、扫描电镜、电化学阻抗(EIS)分析研究了材料的结构、形貌和电化学性能。结果表明:掺杂Mn、Mg两种金属的Li4-x MgxTi5-yMnyO12材料,其中x=0.02,y=0.02时所制备的Li3.98Mg0.02Ti4.98Mn0.02O12样品,具有良好的电化学性能。在1~2.5V进行充放电,0.1C时,首次放电容量达到154.7 mAh/g。在0.2C、0.5C、1.0C下循环20次后,稳定在107.2、99.3、73.9 mAh/g。再次进行0.1C充放电时,放电比容量为110.8 mAh/g,容量保持率为75%。掺杂金属改善了Li4Ti5O12材料的导电性,提高了该材料的倍率性能以及循环性能。  相似文献   

14.
李玲  韩恩山  朱令之  冯欣 《电池》2012,42(2):96-99
通过高温固相法合成锂离子电池正极材料Li0.98M0.02Fe0.95V0.05PO4/C(M=Mg、Ti、Al、Ni、Zr、Mo和Mn),用XRD、循环伏安(CV)、电化学阻抗谱(EIS)和恒流充放电等方法研究了产物的性能.金属掺杂后的材料,首次充放电比容量均高于未掺杂的纯相材料.在室温下,掺杂Mg的材料在4.2~2.4 V充放电,0.1C首次放电比容量可达154.1 mAh/g,且高倍率充放电比容量高于纯相材料,循环性能稳定,具有较好的电化学性能.  相似文献   

15.
王雷  唐致远  阮艳莉  胡冉 《电源技术》2006,30(7):549-551,593
为解决锂离子蓄电池新型正极材料LiFePO4的低导电率的问题,采用高温固相法合成出包覆碳并掺杂了少量Mg2 的LiFePO4样品。采用X射线衍射、充放电测试、交流阻抗和循环伏安测试方法,深入研究了包覆碳后Mg2 掺杂对LiFePO4结构和电化学性能的影响。研究结果表明,包覆碳后掺杂少量的Mg2 能进一步提高LiFePO4的导电性,从而提高材料的比容量和循环性能。不同的Mg2 离子掺杂量(x=0.02、0.04、0.06、0.08)里,Li0.94Mg0.06FePO4的电化学性能最佳,以0.1C充放电,首次放电比容量为141.9mAh/g,充放电效率为93.1%;循环50次后,容量几乎没有衰减。  相似文献   

16.
采用球磨法制备不同氧化石墨烯添加量的LiFePO4/GO复合材料,研究氧化石墨烯添加量对LiFePO4正极锂离子电池性能的影响。通过XRD、SEM、FTIR、XPS和相关的电化学方法研究了材料的物理和电化学性能。结果表明,球磨法制备LiFePO4/GO复合材料不改变LiFePO4的物性,与纯LiFePO4相比,LiFePO4/GO复合材料表现出更好的高倍率性能和循环稳定性。其中LiFePO4与GO质量比为100∶1.25时,GO-1.25混合材料在0.5 C放电倍率下循环100次后显示出154.9 mAh/g的放电比容量,其容量保持率为98.7%。  相似文献   

17.
高镍三元LiNi0.6Co0.2Mn0.2O2(NCM60)因其具有较高的放电比容量以及能量密度,是一种非常有发展潜力的锂离子电池正极材料。然而由于较为严重的结构/界面恶化现象(如微裂纹,界面副反应等),NCM60材料的电化学性能及循环寿命受到严重的限制。采用单晶化策略,成功合成出了微米级单晶NCM60正极材料;并以Ni0.6Co0.2Mn0.2(OH)2前驱体为基体,采用预包覆和共锂化的方法,在单晶正极材料NCM60表面均匀包覆Li2ZrO3快离子导体层。一方面,表面均匀包覆Li2ZrO3层改善了材料充放电过程中锂离子的扩散动力学,有助于降低电极极化程度;另一方面,Li2ZrO3具有稳定的晶体结构,通过与NCM60材料紧密结合,提高材料机械稳定性,有效抑制微裂纹的产生并减轻界面副反...  相似文献   

18.
牛少军  陈猛  蒲俊红 《电池工业》2007,12(6):403-407
采用溶胶-凝胶法合成了尖晶石型LiMn2O4及其掺杂改性的LiCo0.025M0.025Mn1.95O4(M=Mg,Cr,Ni)正极材料。通过X射线衍射对材料的晶体结构进行了分析,通过恒电流充放电、循环伏安和电化学阻抗测试技术对材料的电化学性能进行了测试。实验结果表明,所制备的材料LiMn2O4和LiCo0.025M0.025Mn1.95O4(M=Mg,Cr,Ni)均具有良好的尖晶石结构,其中材料LiCo0.025Ni0.025Mn1.95O4的电化学性能最佳。以0.2C倍率循环充放电,首次放电比容量可达119.94mAh/g,50次循环后放电比容量仍保持在117.78mAh/g以上,容量保持率为98.20%。  相似文献   

19.
肖志平  唐仁衡  王英  肖方明 《电源技术》2012,36(8):1089-1092
以醋酸镁为Mg2+的掺杂源,在空气气氛下采用分段固相法合成了掺杂Mg2+的尖晶石Li4Ti5O12。通过扫描电镜(SEM)、X射线衍射(XRD)及电化学等测试手段对材料的性能进行表征。结果表明:掺杂未有改变材料的尖晶石结构,掺杂后样品的0.2 C首次放电比容量比未掺杂样品略有降低,但显示出优异的电化学倍率性能和循环稳定性,以10 C充放电时,放电比容量是未掺杂的2.2倍,且10次循环之后容量没有明显衰减。电化学交流阻抗研究表明,掺杂Mg之后材料的电荷转移阻抗Rct从130Ω降到20Ω,显著地提高了材料的电子导电性。  相似文献   

20.
以La3+为Li位掺杂离子、Mg2+为Fe位掺杂离子,采用液相法合成双位掺杂的Li1-xLaxFe1-yMgyPO4/C(0≤x<1,O≤y<1)锂离子电池复合正极材料.通过X射线衍射法(XRD)和扫描电子显微镜法(SEM)研究材料的结构及形貌,恒流充放电测试电化学性能,考察Li1-xLa xFe1-yMgyPO4/C室温和低温电化学性能.结果表明:适量的La、Mg离子掺杂并未改变材料的结构;当La3+离子掺杂量为1%(摩尔分数)、Mg2+离子掺杂量为10%(摩尔分数)时,Li1-xLa xFe1-yMgyPO4/C的电化学性能最优.室温下,0.1C首次充放电比容量达到155 mAh/g.-20℃时,1 C、5 C、10 C较大倍率下首次充放电比容量为69、68、69 mAh/g,低温下不同放电倍率下稳定性良好,拥有优异的低温循环稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号