首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fischer–Tropsch synthesis was carried out in slurry phase over uniformly dispersed Co–SiO2 catalysts prepared by the sol–gel method. When 0.01–1 wt.% of noble metals were added to the Co–SiO2 catalysts, a high and stable catalytic activity was obtained over 60 h of the reaction at 503 K and 1 MPa. The addition of noble metals increased the reducibility of surface Co on the catalysts, without changing the particle size of Co metal significantly. High dispersion of metallic Co species stabilized on SiO2 was responsible for stable activity. The uniform pore size of the catalysts was enlarged by varying the preparation conditions and by adding organic compounds such as N,N-dimethylformamide and formamide. Increased pore size resulted in decrease in CO conversion and selectivity for CO2, a byproduct, and an increase in the olefin/paraffin ratio of the products. By modifying the surface of wide pore silica with Co–SiO2 prepared by the sol–gel method, a bimodal pore structured catalyst was prepared. The bimodal catalyst showed high catalytic performance with reducing the amount of the expensive sol–gel Co–SiO2.  相似文献   

2.
N. J. Coville  J. Li 《Catalysis Today》2002,71(3-4):403-410
A series of Co/B/TiO2 (B=ammoniumborate, boric acid, o-carborane, 0.01–1.5 wt.% B) catalysts were synthesized. The addition of boron decreased the reducibility of the Co as determined from temperature-programmed reduction studies and H2 reduction/O2back titration studies. This in turn decreased the FT activity but not the turnover frequency of the Co catalyst.  相似文献   

3.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

4.
The conversion of CO/H2, CO2/H2 and (CO+CO2)/H2 mixtures using cobalt catalysts under typical Fischer–Tropsch synthesis conditions has been carried out. The results show that in the presence of CO, CO2 hydrogenation is slow. For the cases of only CO or only CO2 hydrogenation, similar catalytic activities were obtained but the selectivities were very different. For CO hydrogenation, normal Fischer–Tropsch synthesis product distributions were observed with an of about 0.80; in contrast, the CO2 hydrogenation products contained about 70% or more of methane. Thus, CO2 and CO hydrogenation appears to follow different reaction pathways. The catalyst deactivates more rapidly for the conversion of CO than for CO2 even though the H2O/H2 ratio is at least two times larger for the conversion of CO2. Since the catalyst ages more slowly in the presence of the higher H2O/H2 conditions, it is concluded that water alone does not account for the deactivation and that there is a deactivation pathway that involves the assistance of CO.  相似文献   

5.
Changes of activity and selectivity during the initial phases of Fischer–Tropsch (FT) synthesis have been measured with three promoted cobalt catalysts. It is shown that the FT regime is formed in situ in a slow process lasting several days. A “construction” of the “true FT catalyst” is therefore assumed. Taking into account complementary investigations, this construction is assigned to the segregation of the catalyst surface caused by strong CO chemisorption. This process would be accompanied by an increase of the number of active sites and their disproportionation into sites of higher and lower coordinations, which would exhibit different catalytic properties. The observed initial activity and selectivity changes are well to be explained with this concept.  相似文献   

6.
The 13C-tracer results from the introduction of 13C2H4 into syngas prior to conversion with a rhodium catalyst have been used to support a surface vinyl mechanism for Fischer–Tropsch synthesis. The results were first interpreted by a mechanism that involved a decrease in 13C species on the surface as the carbon number increased. This model is shown to be incorrect. Considering only the 13C-labeled products, the data are consistent with earlier tracer studies showing that the added 13C2H4 initiates chains.  相似文献   

7.
A highly stable and active Fe-Mn catalyst for slurry Fischer–Tropsch synthesis (FTS) was prepared and scaled up for the application in the industrial pilot plant at Institute of Coal Chemistry (ICC), Chinese Academy of Sciences (CAS). One Lab-scale catalyst and one scaled-up catalyst are introduced in the present paper. The particle size of the Lab-scale catalyst is about 5–15 μm, while it is increased to 30–90 μm for the scaled-up catalyst. Simultaneously, the morphology of the catalyst was greatly improved after the catalyst being scaled up. Both the Lab-scale and scale-up catalysts show high FTS activity. CO conversion of the Lab-scale catalyst and the scaled-up one are over 70.0% (H2/CO = 0.67, 275 °C, 1.5 MPa and 3000 h−1) and 55.0% (H2/CO = 0.67, 260 °C, 1.5 MPa and 2000 h−1), respectively. The catalysts also possess excellent stability, no obvious deactivation was observed during stable run of 4200 h and 1200 h on stream for the two catalysts. However, the Lab-scale catalyst produced more methane (about 8–10 wt%) and C2–4 (22–30 wt%) and less C5+ hydrocarbon (55–70 wt%). Meanwhile, the hydrocarbon distribution of the catalyst was greatly improved for after the catalyst being scaled up, and the distribution of hydrocarbon products become much preferable. The selectivity to methane was well controlled at about 5 wt%, and the sum of and was increased to 91–93 wt%. On the whole, the scaled-up catalyst satisfies the requirements of the application for FTS in the industrial pilot plant of slurry bubble column reactor (SBCR) at ICC, CAS.  相似文献   

8.
The effect of adding zirconia to the alumina support on supported cobalt Fischer–Tropsch catalysts has been studied. At 5 bar and H2:CO ratio 9:1 zirconia addition to the support leads to a significant increase in both activity and selectivity to higher hydrocarbons as compared to the unmodified catalysts. Reducibility and cobalt dispersion on the other hand are not improved by the presence of zirconia compared to the unmodified catalysts. SSITKA measurements have been performed in order to determine the intrinsic activity per active site. At constant temperature, zirconia-modified and unmodified catalysts showed basically the same intrinsic activity. Similar results were obtained with a noble metal (Pt) promoted catalyst. The promoting effect appears to be mainly due to coverage effects rather than a change in the intrinsic activity of the active sites. The turnover frequencies were found to be independent of pressure but strongly temperature dependent. However, the increase in turnover frequency did not account for the entire increase in reaction rate with temperature. This indicates that also the coverage of reactive intermediates increases with increasing temperature.  相似文献   

9.
Passivation of highly dispersed metal catalysts after reduction is necessary prior to exposure to air due to the exothermicity of metal oxidation. This exothermicity can result in a significant increase in temperature of the catalyst resulting in catalyst degradation and a potential fire hazard. This paper reports the results of a study of passivation of Ru-promoted Co/alumina. Passivations using CO and CO+H2 mixtures were compared to the standard method of passivation using small concentrations of O2. Passivation by CO+H2 resulted in a lower temperature rise upon exposure to air than oxygen passivation. Passivation using CO/H2=10 resulted in a catalyst whose catalytic activity for CO hydrogenation was able to be recovered after exposure to air by re-reduction similar to after oxygen passivation. CO passivation yielded a catalyst that was not able to be as well recovered upon re-reduction, probably due to the formation of graphitic carbon. Exposure of the CO/H2 passivated catalyst to air for at least 90 min actually made it easier to recover the original activity upon re-reduction. This is probably related to the oxidation of the carbidic passivation layer during air exposure.  相似文献   

10.
An evaluative investigation of the Fischer–Tropsch performance of two catalysts (20%Co/Al2O3 and 10%Co:10%Mo/Al2O3) has been carried out in a slurry reactor at 2 MPa and 220–260 °C. The addition of Mo to the Co-catalyst significantly increased the acid-site strength suggesting strong electron withdrawing character in the Co-Mo catalyst. Analysis of steady-state rate data however, indicates that the FT reaction proceeds via a similar mechanism on both catalysts (carbide mechanism with hydrogenation of surface precursors as the rate-determining step). Although chain growth, , on both catalysts were comparable (  0.6), stronger CH2 adsorption on the Co-Mo catalyst and lower surface concentration of hydrogen adatoms as a result of increased acid-site strength was responsible for the lower individual hydrocarbons production rate compared to the Co catalyst. The activation energy, E, for Co (96.6 kJ mol−1), is also smaller than the estimate for the Co-Mo catalyst (112 kJ mol−1). Transient hydrocarbon rate profiles on each catalyst are indicative of first-order processes, however the associated surface time constants are higher for alkanes than alkenes on individual catalysts. Even so, for each homologous class, surface time constants for paraffins are greater for Co-Mo than Co, indicative that the adsorption of CH2 species on the Co-Mo surface is stronger than on the monometallic Co catalyst.  相似文献   

11.
Small Co clusters (d<10 nm) supported over mixed La–Co–Fe perovskites were successfully synthesized. These catalysts were active for Fischer–Tropsch (FT). Depending on the Co to Fe ratios the mixed perovskite exhibited two different forms: the rhombohedral phase of LaCoO3 is maintained for the mixed perovskite when x>0.5, the orthorhombic phase of LaFeO3 is found for x<0.5. Interestingly only one of these structures is active for the FT reaction: the orthorhombic structure. This is most likely due to the capacity of this material to maintain its structure even with a high number of cation vacancies. These cations (mostly Co) were on purpose extracted and reduced. Magnetic measurements clearly showed their metallic nature. Rhombohedral Co–Fe mixed perovskites (x≥0.5) cannot be used as precursors for Fischer–Tropsch catalysts: their partial reduction only consists in a complete reduction of Co3+ into Co2+.

The partial reduction of orthorhombic perovskites (x<0.5) leads to active Fischer–Tropsch (FT) catalysts by formation of a metal phase well dispersed on a cation-deficient perovskite. The FT activity is related to the stability of the precursor perovskite. When initially calcined at 600 °C, a maximum of 8.6 wt.% of Co0 can be extracted from LaCo0.40Fe0.60O3 (compared to only 2 wt.% after calcination at 750 °C). The catalyst is then composed of Co0 particles of 10 nm on a stable deficient perovskite LaCo0.053+Fe0.603+O2.40. Catalytic tests showed that up to 70% in the molar selectivity for hydrocarbons was obtained at 250 °C, 40% of which was composed of the C2–C4 fraction.  相似文献   


12.
The influence of syngas composition on the initial behaviour of a Co/Al2O3 catalyst in Fischer–Tropsch reaction has been studied in a continuous perfectly mixed slurry reactor for an inlet H2/CO ratio between 1.6 and 3.35 keeping other conditions constant (T = 220 °C, P = 2 MPa). Significantly different behaviors of initial deactivation for CO conversion have been observed with different H2/CO ratios. It was observed that the deactivation increases with increase in H2/CO ratio and in carbon monoxide conversion. The computed liquid concentrations of CO, H2 and H2O have shown that water is the most abundant species in the liquid phase of the reactor during our experiments. The concentration of the water produced by the FT reaction seems to be the key parameter responsible of the initial behavior and then of the initial deactivation. For moderate levels of water ( corresponding to PH2O/PH2<0.4), a simple kinetic model assuming a reversible oxidation of cobalt active sites by water in competition with their reduction by hydrogen seems to represent satisfactorily the initial behaviour of the catalyst. For higher water concentrations, the irreversible deactivation should be probably taken into consideration.  相似文献   

13.
The pulse transient method has been used to study the kinetics of several key steps of Fischer–Tropsch (FT) synthesis over cobalt supported catalysts. These elementary steps involve chemisorption of hydrogen and propene, and chemisorption and hydrogenation of carbon monoxide. It is found that at the conditions of Fischer–Tropsch synthesis, hydrogen chemisorption is reversible and quasi-equilibrated, while carbon monoxide adsorption is generally irreversible. Chemisorption of propene on cobalt metal sites results in its rapid autohydrogenation to propane and simultaneous formation of CxHy surface species.

The transient response curves produced during hydrogenation of carbon monoxide pulses in a flow of hydrogen have been analyzed using the modified Kobayashi model, which involves irreversible chemisorption and dissociation of carbon monoxide, quasi-equilibrated adsorption of hydrogen and reversible adsorption of water. The kinetic analysis suggests that oxygen-containing species are probably the most abundant surface intermediates. Desorption of water from the catalysts seems to be much slower than hydrogenation of surface carbon species.  相似文献   


14.
Square channel cordierite monoliths have been loaded with alumina washcoat layers of various thicknesses (20–110 μm) and loaded with rhenium and cobalt resulting in a 0.1 wt.% Re/17 wt.% Co/Al2O3 catalyst. These monolithic catalysts have been tested in the Fischer–Tropsch synthesis in a temperature window (180–225 °C) under synthesis gas compositions ranging from stoichiometrically excess carbon monoxide to excess hydrogen (H2/CO = 1–3). The results include data on the activity and selectivity of CoRe/Al2O3 monolithic catalysts for FTS under these process conditions. Washcoat layers thicker than about 50 μm appear to lead to internal diffusion limitations. Thinner washcoat layers yield, depending on the conditions, to larger amounts of -olefins than alkanes for chain lengths below 10 carbon atoms. ASF and non-ASF chain length distributions are obtained for thin washcoats, whereby the chain growth probability increases from 0.83 to 0.93. Under certain conditions the amounts of alkanes even increase with chain length. These experimental results with different diffusion lengths have been used to analyze the effects of secondary reactions on FTS selectivity.  相似文献   

15.
The following overview is divided roughly into three sections. The first section covers the period from the late 1920s when the first liquid phase synthesis was first conducted until about 1960 when the interest in Fischer–Tropsch synthesis (FTS) declined because of the renewed view of an abundance of petroleum at a low price. The second period includes the activity that resulted from the oil shortage due to the Arab embargo in 1972 and covers from about 1960 to 1985 when the period of gloomy projections for rapidly increasing prices for crude had faded away. The third section covers the period from when the interest in FTS was no longer driven by the projected supply and/or price of petroleum but by the desire to monetize stranded natural gas and/or terminate flaring the gas associated with petroleum production and other environmental concerns (1985 to date). These sections are followed by a brief overview of the current status of the scientific and engineering understanding of slurry bubble column reactors.  相似文献   

16.
The oxidation of supported cobalt based slurry bed Fischer–Tropsch catalysts by means of water was studied. Water is one of the Fischer–Tropsch reaction products and can probably cause oxidation and deactivation of a reduced cobalt catalyst. Model experiments using Mössbauer emission spectroscopy and thermogravimetry as well as realistic Fischer–Tropsch synthesis runs were performed. It was demonstrated that Mössbauer emission spectroscopy can successfully be applied to the investigation of high cobalt loading Fischer–Tropsch catalysts. Strong indications were found that oxidation of reduced cobalt catalysts occurs under realistic Fischer–Tropsch conditions. Mössbauer emission spectroscopy and thermogravimetry results showed that the oxidation depends on the PH2/PH2O ratio, and that oxidation proceeds to less than complete extents under certain conditions. The formation of both reducible and less reducible cobalt oxide species was observed, and the relative ratio between these species depends on the severity of the oxidation conditions.  相似文献   

17.
The direct synthesis of gasoline-range iso-paraffins from synthesis gas (CO + H2, syngas) via a modified Fischer–Tropsch (FT) reaction was intensively studied under a wide range of reaction conditions by the combination of Co/SiO2 and Pd/beta in a consecutive dual reactor system. Results indicate that high selectivity of gasoline-range iso-paraffins (iso-paraffins relative to C4+ hydrocarbons was about 80%) could be achieved with the presence of Pd/beta catalyst in the lower reactor. Moreover, the performance of the Pd/beta catalyst for the titled reaction and the product composition can be significantly regulated by independently changing the reaction conditions such as catalyst amount, reaction temperature, and hydrogen partial pressure in the lower reactor. It was found that the Pd/beta catalyst used in this work was very active and stable even at a reaction temperature as low as 503 K. With the increase of hydrogen partial pressure in the lower reactor, the long-term stability of the Pd/beta catalyst was significantly enhanced.  相似文献   

18.
Both low loaded 15% Co/Al2O3 and more highly loaded 25% Co/Al2O3 catalysts are studied, in order to explore the impact of cluster size on the stability of the cobalt cluster to support-influenced reoxidation processes at high H2O/CO ratios. XAFS and activity data suggest that there are two regions for the water effect: at lower H2O/CO ratios water influences CO conversion by reversible kinetic effects while at higher H2O/CO ratios cobalt re-oxidation processes occur. The latter regime where water was added at and above 25% are examined. Synthesis conditions were maintained constant while argon balancing gas was replaced by added water. Catalyst samples were withdrawn from the reactor during synthesis at different partial pressures of added water and cooled in the wax product under inert gas. The EXAFS results suggest that, unlike the smaller clusters on unpromoted and, especially noble-metal promoted, 15% Co/Al2O3 catalysts, the larger crystallites (>10 nm by chemisorption and XRD) on 25% Co/Al2O3 undergo oxidation by H2O to CoO, most likely confined to the surface. The clusters are re-reduced when H2O was switched off, and the activity displayed an important recovery.  相似文献   

19.
The study of permeable composite monolith (PCM) membranes for the Fischer–Tropsch synthesis is continued. On the scale of membranes with outer diameter of 42 mm, it is proved that PCM can combine high productivity of hydrocarbons (>55 kgC5+ ( h)−1 at 0.6 MPa, 484 K), high selectivity towards heavy hydrocarbons (ASF > 0.85, C5+ upto 0.9) as well as high heat-conductivity and high mechanical strength.  相似文献   

20.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号