首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article investigates multi-objective optimization under reliability constraints with applications in vehicle structural design. To improve computational efficiency, an improved multi-objective system reliability-based design optimization (MOSRBDO) method is developed, and used to explore the lightweight and high-performance design of a concept car body under uncertainty. A parametric model knowledge base is established, followed by the construction of a fully parametric concept car body of a multi-purpose vehicle (FPCCB-MPV) based on the knowledge base. The structural shape, gauge and topology optimization are then designed on the basis of FPCCB-MPV. The numerical implementation of MOSRBDO employs the double-loop method with design optimization in the outer loop and system reliability analysis in the inner loop. Multi-objective particle swarm optimization is used as the outer loop optimization solver. An improved multi-modal radial-based importance sampling (MRBIS) method is utilized as the system reliability solver for multi-constraint analysis in the inner loop. The accuracy and efficiency of the MRBIS method are demonstrated on three widely used test problems. In conclusion, MOSRBDO has been successfully applied for the design of a full parametric concept car body. The results show that the improved MOSRBDO method is more effective and efficient than the traditional MOSRBDO while achieving the same accuracy, and that the optimized body-in-white structure signifies a noticeable improvement from the baseline model.  相似文献   

2.
V. Ho-Huu  T. Le-Duc  L. Le-Anh  T. Vo-Duy 《工程优选》2018,50(12):2071-2090
A single-loop deterministic method (SLDM) has previously been proposed for solving reliability-based design optimization (RBDO) problems. In SLDM, probabilistic constraints are converted to approximate deterministic constraints. Consequently, RBDO problems can be transformed into approximate deterministic optimization problems, and hence the computational cost of solving such problems is reduced significantly. However, SLDM is limited to continuous design variables, and the obtained solutions are often trapped into local extrema. To overcome these two disadvantages, a global single-loop deterministic approach is developed in this article, and then it is applied to solve the RBDO problems of truss structures with both continuous and discrete design variables. The proposed approach is a combination of SLDM and improved differential evolution (IDE). The IDE algorithm is an improved version of the original differential evolution (DE) algorithm with two improvements: a roulette wheel selection with stochastic acceptance and an elitist selection technique. These improvements are applied to the mutation and selection phases of DE to enhance its convergence rate and accuracy. To demonstrate the reliability, efficiency and applicability of the proposed method, three numerical examples are executed, and the obtained results are compared with those available in the literature.  相似文献   

3.
Reliability-based robust design optimization (RBRDO) is a crucial tool for life-cycle quality improvement. Gaussian process (GP) model is an effective alternative modeling technique that is widely used in robust parameter design. However, there are few studies to deal with reliability-based design problems by using GP model. This article proposes a novel life-cycle RBRDO approach concerning response uncertainty under the framework of GP modeling technique. First, the hyperparameters of GP model are estimated by using the Gibbs sampling procedure. Second, the expected partial derivative expression is derived based on GP modeling technique. Moreover, a novel failure risk cost function is constructed to assess the life-cycle reliability. Then, the quality loss function and confidence interval are constructed by simulated outputs to evaluate the robustness of optimal settings and response uncertainty, respectively. Finally, an optimization model integrating failure risk cost function, quality loss function, and confidence interval analysis approach is constructed to find reasonable optimal input settings. Two case studies are given to illustrate the performance of the proposed approach. The results show that the proposed approach can make better trade-offs between the quality characteristics and reliability requirements by considering response uncertainty.  相似文献   

4.
The application of design-point-based reliability-based design optimization (RBDO) methods is hindered by the challenge of multiple-design-point problems. In this article, to improve the commonality of design-point-based RBDO methods, a novel multiple-design-point (MDP) approach is developed. The MDP approach uses the trace of the design points from consequent reliability analysis iterations to identify whether there are multiple design points, then all of the design points are used to calculate shifting vectors for the sequential optimization and reliability assessment method, and the corresponding probabilistic constraints are moved to the feasible region along these multiple shifting vectors at the same time. With multiple shifted probabilistic constraints, the design feasibility associated with this probabilistic constraint will be satisfied. Two mathematical examples, a speed reducer design and a honeycomb crashworthiness design, are presented to validate the effectiveness of the MDP method. The results show that the MDP approach is effective for handling multiple-design-point problems.  相似文献   

5.
It is important to design robust and reliable systems by accounting for uncertainty and variability in the design process. However, performing optimization in this setting can be computationally expensive, requiring many evaluations of the numerical model to compute statistics of the system performance at every optimization iteration. This paper proposes a multifidelity approach to optimization under uncertainty that makes use of inexpensive, low‐fidelity models to provide approximate information about the expensive, high‐fidelity model. The multifidelity estimator is developed based on the control variate method to reduce the computational cost of achieving a specified mean square error in the statistic estimate. The method optimally allocates the computational load between the two models based on their relative evaluation cost and the strength of the correlation between them. This paper also develops an information reuse estimator that exploits the autocorrelation structure of the high‐fidelity model in the design space to reduce the cost of repeatedly estimating statistics during the course of optimization. Finally, a combined estimator incorporates the features of both the multifidelity estimator and the information reuse estimator. The methods demonstrate 90% computational savings in an acoustic horn robust optimization example and practical design turnaround time in a robust wing optimization problem. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Reliability-based design optimization (RBDO) has been intensively studied due to its significance and its conceptual and mathematical complexity. This paper proposes a new method for RBDO on the basis of the concept of reliable design space (RDS), within which any design satisfies the reliability requirements. Therefore, a RBDO problem becomes a simple, deterministic optimization problem constrained by RDS rather than its deterministic feasible space. The RDS is found in this work by using the partial derivatives at the current design point as an approximation of the derivatives at its corresponding most probable point (MPP) on the limit state function. This work completely resolves the double loop in RBDO and turns RBDO into a simple optimization problem. Well-known problems from the literature are selected to illustrate the steps of the approach and for result comparison. Discussions will also be given on the limitation of the proposed method, which is shown to be a common limitation overlooked by the research community on RBDO.  相似文献   

7.
 在贝叶斯统计理论和结构可靠性优化设计方法的基础上,研究了结构在小样本情况下考虑可靠度可信区间的结构可靠性优化设计问题.将结构可靠度作为随机变量,根据先验信息和样本信息,采用贝叶斯推断技术获得结构可靠度的概率分布,给出了可靠度的点估计及区间估计.建立了考虑可靠度可信区间的结构可靠性优化设计模型,提出了考虑可靠度可信区间的结构可靠性优化设计方法.所提出的方法为解决小样本情况下的结构可靠性优化设计问题提供了新的解决方案.数值算例验证了所提出的结构可靠性优化设计方法的有效性和正确性.  相似文献   

8.
This paper presents a general parametric design approach for 2-D shape optimization problems. This approach has been achieved by integrating practical design methodologies into numerical procedures. It is characterized by three features: (i) automatic selection of a minimum number of shape design variables based on the CAD geometric model; (ii) integration of sequential convex programming algorithms to solve equality constrained optimization problems; (iii) efficient sensitivity analysis by means of the improved semi-analytical method. It is shown that shape design variables can be either manually or systematically identified with the help of equality constraints describing the relationship between geometric entities. Numerical solutions are performed to demonstrate the applicability of the proposed approach. A discussion of the results is also given:  相似文献   

9.
10.
With the increasing complexity of engineering systems, ensuring high system reliability and system performance robustness throughout a product life cycle is of vital importance in practical engineering design. Dynamic reliability analysis, which is generally encountered due to time-variant system random inputs, becomes a primary challenge in reliability-based robust design optimization (RBRDO). This article presents a new approach to efficiently carry out dynamic reliability analysis for RBRDO. The key idea of the proposed approach is to convert time-variant probabilistic constraints to time-invariant ones by efficiently constructing a nested extreme response surface (NERS) and then carry out dynamic reliability analysis using NERS in an iterative RBRDO process. The NERS employs an efficient global optimization technique to identify the extreme time responses that correspond to the worst case scenario of system time-variant limit state functions. With these extreme time samples, a kriging-based time prediction model is built and used to estimate extreme responses for any given arbitrary design in the design space. An adaptive response prediction and model maturation mechanism is developed to guarantee the accuracy and efficiency of the proposed NERS approach. The NERS is integrated with RBRDO with time-variant probabilistic constraints to achieve optimum designs of engineered systems with desired reliability and performance robustness. Two case studies are used to demonstrate the efficacy of the proposed approach.  相似文献   

11.
Amin Toghi Eshghi 《工程优选》2013,45(12):2011-2029
Reliability-based design optimization (RBDO) requires the evaluation of probabilistic constraints (or reliability), which can be very time consuming. Therefore, a practical solution for efficient reliability analysis is needed. The response surface method (RSM) and dimension reduction (DR) are two well-known approximation methods that construct the probabilistic limit state functions for reliability analysis. This article proposes a new RSM-based approximation approach, named the adaptive improved response surface method (AIRSM), which uses the moving least-squares method in conjunction with a new weight function. AIRSM is tested with two simplified designs of experiments: saturated design and central composite design. Its performance on reliability analysis is compared with DR in terms of efficiency and accuracy in multiple RBDO test problems.  相似文献   

12.
Recent advances in shape optimization rely on free-form implicit representations, such as level sets, to support boundary deformations and topological changes. By contrast, parametric shape optimization is formulated directly in terms of meaningful geometric design variables, but usually does not support free-form boundary and topological changes. We propose a novel approach to shape optimization that combines and retains the advantages of the earlier optimization techniques. The shapes in the design space are represented implicitly as level sets of a higher-dimensional function that is constructed using B-splines (to allow free-form deformations), and parameterized primitives combined with R-functions (to support desired parametric changes). Our approach to shape design and optimization offers great flexibility because it provides explicit parametric control of geometry and topology within a large space of free-form shapes. The resulting method is also general in that it subsumes most other types of shape optimization as special cases. We describe an implementation of the proposed technique with attractive numerical properties. The explicit construction of an implicit representation supports straightforward sensitivity analysis that can be used with most gradient-based optimization methods. Furthermore, our implementation does not require any error-prone polygonization or approximation of level sets (isocurves and isosurfaces). The effectiveness of the method is demonstrated by several numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A challenge in engineering design is to choose suitable objectives and constraints from many quantities of interest, while ensuring an optimization is both meaningful and computationally tractable. We propose an optimization formulation that can take account of more quantities of interest than existing formulations, without reducing the tractability of the problem. This formulation searches for designs that are optimal with respect to a binary relation within the set of designs that are optimal with respect to another binary relation. We then propose a method of finding such designs in a single optimization by defining an overall ranking function to use in optimizers, reducing the cost required to solve this formulation. In a design under uncertainty problem, our method obtains the most robust design that is not stochastically dominated faster than a multiobjective optimization. In a car suspension design problem, our method obtains superior designs according to a k-optimality condition than previously suggested multiobjective approaches to this problem. In an airfoil design problem, our method obtains designs closer to the true lift/drag Pareto front using the same computational budget as a multiobjective optimization.  相似文献   

14.
In optimization under uncertainty for engineering design, the behavior of the system outputs due to uncertain inputs needs to be quantified at each optimization iteration, but this can be computationally expensive. Multifidelity techniques can significantly reduce the computational cost of Monte Carlo sampling methods for quantifying the effect of uncertain inputs, but existing multifidelity techniques in this context apply only to Monte Carlo estimators that can be expressed as a sample average, such as estimators of statistical moments. Information reuse is a particular multifidelity method that treats previous optimization iterations as lower fidelity models. This work generalizes information reuse to be applicable to quantities whose estimators are not sample averages. The extension makes use of bootstrapping to estimate the error of estimators and the covariance between estimators at different fidelities. Specifically, the horsetail matching metric and quantile function are considered as quantities whose estimators are not sample averages. In an optimization under uncertainty for an acoustic horn design problem, generalized information reuse demonstrated computational savings of over 60% compared with regular Monte Carlo sampling.  相似文献   

15.
The reliability index approach (RIA) is one of the effective tools for solving the reliability-based design optimization (RBDO) probabilistic model, which models the uncertainties with probability constraints. However, its wide application in engineering is limited due to low efficiency and convergence problems. The RIA-based modified reliability index approach (MRIA) appears to be very robust and accurate than RIA but yields inefficient for the most probable point (MPP) search with highly nonlinear probabilistic constraints. In this study, an enhanced modified reliability index approach (EMRIA) is developed to improve the efficiency and robustness of searching for MPP and is utilized for RBDO. In the EMRIA, an innovative active set using rigorous inequality is applied to construct the region of exploring for MPP, where the unnecessary probabilistic constraint could be eliminated adaptively during the iterative process. Moreover, the double loop strategy (DLS) is integrated into the EMRIA to strengthen the efficiency and robustness of large-scale RBDO problems. Two numerical examples demonstrated that the EMRIA is an efficient and robust method for MPP search in comparison with current first-order reliability methods. Six RBDO problems quoted also indicate that DLS-based EMRIA has good performance to solve complex RBDO problems.  相似文献   

16.
This paper addresses the challenge of design optimization under uncertainty when the designer only has limited data to characterize uncertain variables. We demonstrate that the error incurred when estimating a probability distribution from limited data affects the out-of-sample performance (ie, performance under the true distribution) of optimized designs. We demonstrate how this can be mitigated by reformulating the engineering design problem as a distributionally robust optimization (DRO) problem. We present computationally efficient algorithms for solving the resulting DRO problem. The performance of the DRO approach is explored in a practical setting by applying it to an acoustic horn design problem. The DRO approach is compared against traditional approaches to optimization under uncertainty, namely, sample-average approximation and multiobjective optimization incorporating a risk reduction objective. In contrast with the multiobjective approach, the proposed DRO approach does not use an explicit risk reduction objective but rather specifies a so-called ambiguity set of possible distributions and optimizes against the worst-case distribution in this set. Our results show that the DRO designs, in some cases, significantly outperform those designs found using the sample-average or the multiobjective approach.  相似文献   

17.
It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.  相似文献   

18.
A deterministic optimization usually ignores the effects of uncertainties in design variables or design parameters on the constraints. In practical applications, it is required that the optimum solution can endure some tolerance so that the constraints are still satisfied when the solution undergoes variations within the tolerance range. An optimization problem under tolerance conditions is formulated in this article. It is a kind of robust design and a special case of a generalized semi-infinite programming (GSIP) problem. To overcome the deficiency of directly solving the double loop optimization, two sequential algorithms are then proposed for obtaining the solution, i.e. the double loop optimization is solved by a sequence of cycles. In each cycle a deterministic optimization and a worst case analysis are performed in succession. In sequential algorithm 1 (SA1), a shifting factor is introduced to adjust the feasible region in the next cycle, while in sequential algorithm 2 (SA2), the shifting factor is replaced by a shifting vector. Several examples are presented to demonstrate the efficiency of the proposed methods. An optimal design result based on the presented method can endure certain variation of design variables without violating the constraints. For GSIP, it is shown that SA1 can obtain a solution with equivalent accuracy and efficiency to a local reduction method (LRM). Nevertheless, the LRM is not applicable to the tolerance design problem studied in this article.  相似文献   

19.
To decrease random parameters’ influence on the drum brake reliability, the reliability-based robust optimization design (RBROD) of the electric vehicle brake is proposed. Based on the assumption that the maximum temperature of the brake cannot exceed the allowable temperature, a performance function model of thermal–mechanical coupling reliability of drum brakes is established by the adaptive Kriging method, and the analysis of reliability sensitivity and RBROD are conducted. The accuracy of the proposed model is verified by temperature measurement experiment under emergency braking condition. The robust optimization design improves the drum brake reliability to 0.99998 and reduce the influence of the design parameters on the reliability, with the absolute values of the reliability sensitivity and the weight of the drum brake are significantly smaller. Therefore, the objectives of reliability design, robustness design, and optimization design are simultaneously achieved by the proposed methods. Besides, the relative error of the proposed method is 0.373%, the number of function evaluations is 39, and the comparison with four meta-model methods show that the proposed method holds high-accuracy and high-efficiency. This study provides a high-precision theoretical explanation for the robust optimization design of drum brake.  相似文献   

20.
This paper is focused on the development of an efficient reliability-based design optimization algorithm for solving problems posed on uncertain linear dynamic systems characterized by large design variable vectors and driven by non-stationary stochastic excitation. The interest in such problems lies in the desire to define a new generation of tools that can efficiently solve practical problems, such as the design of high-rise buildings in seismic zones, characterized by numerous free parameters in a rigorously probabilistic setting. To this end a novel decoupling approach is developed based on defining and solving a limited sequence of deterministic optimization sub-problems. In particular, each sub-problem is formulated from information pertaining to a single simulation carried out exclusively in the current design point. This characteristic drastically limits the number of simulations necessary to find a solution to the original problem while making the proposed approach practically insensitive to the size of the design variable vector. To demonstrate the efficiency and strong convergence properties of the proposed approach, the structural system of a high-rise building defined by over three hundred free parameters is optimized under non-stationary stochastic earthquake excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号