首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Single-unit impulse activity from 25 mechanoreceptive afferents was recorded in the human inferior alveolar nerve using tungsten microelectrodes. All of these afferents were considered to originate in periodontal receptors because they showed responses to mechanical stimulation of one or more teeth but not to stimulation of the gingiva. 2. For each afferent isolated, forces with "ramp-and-hold"-shaped profiles of similar magnitudes (261 +/- 21 mN, mean +/- SD) were applied to the incisors, the canine, and the first premolar on the recording side, and the contralateral central incisor in four horizontal directions: lingual, labial, mesial, and distal. For a few of the afferents, forces were also applied in the axial directions (up and down). Both static and dynamic response components were analyzed. 3. For about one half of the tested afferents, the receptive fields were restricted to a single tooth. The remainder (52%) responded to stimulation of a group of teeth (on average 3.1 teeth), which typically showed contact between their crowns. 4. Afferents responding to loading of multiple teeth showed their strongest responses to forces applied to a particular tooth, with a gradual decline in the responsiveness to the adjacent teeth. 5. The stimulation directions eliciting the strongest afferent responses for the most sensitive tooth were approximately evenly distributed over the four stimulation directions, except for some bias toward the lingual direction. In contrast, loading of the adjacent teeth most often showed the strongest responses in the mesial or distal directions, in most cases toward the most sensitive tooth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Crayfish escape from threats by either giant neuron-mediated "reflex" tail flexions that occur with very little delay but do not allow for much sensory guidance of trajectory or by "nongiant" tail flexion responses that allow for sensory guidance but occur much less promptly. Thus, when a stimulus occurs, the nervous system must make a rapid assessment of whether to use the faster reflex system or the slower nongiant one. It does this on the basis of the abruptness of stimulus onset; only stimuli of very abrupt onset trigger giant-mediated responses. We report here that stimuli which excite the lateral giant (LG) command neurons for one form of reflex escape also produce a slightly delayed postexcitatory inhibition (PEI) of the command neurons. As a result, only stimuli that become strong enough to excite the command neurons to firing threshold before the onset of PEI, within a few milliseconds of stimulus onset, can cause giant-mediated responses. This inhibition is directed to distal dendrites of the LG neurons, which allows for some location specificity of PEI within the sensory field of a single hemisegment.  相似文献   

3.
An in vitro preparation of the crayfish central nervous system was used to study a negative feedback control exerted by the glutamatergic motor neurons (MNs) on to their presynaptic cholinergic sensory afferents. This negative control consists in small amplitude, slowly developing depolarizations of the primary afferents (sdPADs) strictly timed with MN bursts. They were not blocked by picrotoxin, but were sensitive to glutamate non-N-methyl-D-aspartate (NMDA) antagonists. Intracellular recordings were performed within thin branches of sensory terminals while electrical antidromic stimulation were applied to the motor nerves, or while glutamate (the MN neurotransmitter) was pressure-applied close to the recording site. Electrical motor nerve stimulations and glutamate pressure application had similar effects on to sensory terminals issued from the coxo-basipodite chordotonal organ (CBTs): like sdPADs, both stimulation-induced depolarizations were picrotoxin-resistant and were dramatically reduced by non-NMDA antagonist bath application. These results indicate that sdPADs are likely directly produced by MNs during locomotor activity. A functional scheme is proposed.  相似文献   

4.
5.
The main criteria asked to a GABAergic synapse, have been fulfilled by GABA at the recepto-neural junction of the sensory periphery of vestibular organs in vertebrates. These criteria include the demonstration of its precursor, its synthesizing and degrading (inactivating) mechanisms and their localization with the right polarity of a GABAergic synapse. A novel GABA depolarizing action with particular pharmacological characteristics and expression of subunits of GABA receptors of the synaptic type (GABAA, GABAB or a putative mixed GABAA-GABAC) that could account for these properties are discussed.  相似文献   

6.
The disposition and orientation of mouse ductin (the subunit c of the vacuolar H(+)-ATPase) in gap junctions has been examined. Like the Nephrops norvegicus (arthropod) form, mouse ductin in the intact junctional structure is resistant to high levels of nonspecific proteinase, suggesting that it is for the most part buried in the bilayer. Antisera to an octapeptide near the N-terminus cross-react with ductins in gap junction preparations from four different mouse tissues, from chicken and Xenopus laevis liver, and from N. norvegicus hepatopancreas. The antisera and antibodies, affinity purified against the octapeptide, agglutinate isolated gap junctions, suggesting that the N-terminus is located on the exposed surface, equivalent to the cytoplasmic face of an intercellular gap junction. The antibodies also block dye coupling when injected into cells in culture, confirming the cytoplasmic location of the epitope. The lipophylic reagent dicylohexyl carbodiimide (DCCD), which targets carboxyl groups within the membrane and selectively reacts with ductin in N. norvegicus gap junction preparations, rapidly inhibits junctional communication. Bafilomycin A1, which inhibits V-ATPase and stops vacuolar acidification, does not affect dye coupling, showing that the inhibition seen with antibodies and DCCD is not an indirect consequence of their action on the ductin of V-ATPase. Consistent with this interpretation the anti-peptide antibodies do not bind to intact chromaffin granules or inhibit their V-ATPase activity, but do bind to osmotically disrupted granule membrane. This suggests that ductin has an orientation (N-terminus pointing away from the cytoplasm) in the vacuolar membrane opposite to that in the gap junction membrane.  相似文献   

7.
8.
This study was primarily aimed at investigating the selectivity of the cortico-spinal actions exerted on the pathways mediating primary afferent depolarization (PAD) of muscle spindle and tendon organ afferents ending within the intermediate nucleus at the L6-L7 segmental level. To this end we analyzed, in the anesthetized cat, the effects produced by electrical stimulation of sensory nerves and of the cerebral cortex on (a) the intraspinal threshold of pairs of single group I afferent fibers belonging to the same or to different hindlimb muscles and (b) the intraspinal threshold of two collaterals of the same muscle afferent fiber. Afferent fibers were classified in three categories, according to the effects produced by stimulation of segmental nerves and of the cerebral cortex. Twenty-five of 40 fibers (62.5%) were depolarized by stimulation of group I posterior biceps and semitendinosus (PBSt) or tibialis (Tib) fibers, but not by stimulation of the cerebral cortex or of cutaneous and joint nerves, which instead inhibited the PBSt- or Tib-induced PAD (type A PAD pattern, usually seen in Ia fibers). The remaining 15 fibers (37.5%) were all depolarized by stimulation of the PBSt or Tib nerves and the cerebral cortex. Stimulation of cutaneous and joint nerves produced PAD in 10 of those 15 fibers (type B PAD pattern) and inhibited the PBSt- or Tib-induced PAD in the 5 remaining fibers (type C PAD pattern). Fibers with a type B or C PAD pattern are likely to be Ib. Not all sites in the cerebral cortex inhibited with the same effectiveness the segmentally induced PAD of group I fibers with a type A PAD pattern. With the weakest stimulation of the cortical surface, the most effective sites that inhibited the PAD of individual fibers were surrounded by less effective sites, scattered all along the motor cortex (area 4gamma and 6) and sensory cortex (areas 3, 2 and 1), far beyond the area of projection of group I fibers from the hindlimb. With higher strengths of cortical stimulation, the magnitude of the inhibition was also increased, and previously ineffective or weakly effective sites became more effective. Maps obtained when using the weakest cortical stimuli have indicated that the most effective regions that produced PAD of group I fibers with a type B or type C PAD pattern were also scattered throughout the sensory-motor cortex, in the same general area as those that inhibited the PAD of group I afferents with a type A PAD pattern. In eight fibers with a type A PAD pattern it was possible to examine the intraspinal threshold of two collaterals of the same single afferent fiber ending within the intermediate nucleus at the L7 segmental level. In six fibers, stimulation of the PBSt nerve with trains of pulses between 1.5 and 1.86 times threshold (xT) produced a larger PAD in one collateral than in the other. In seven fibers, stimulation of the sensory-motor cortex and of cutaneous nerves produced a larger inhibition of the PBSt-induced PAD in one collateral than in the other. The ratio of the cortically induced inhibition of the PAD elicited in the two collaterals could be modified by changing the strength of cortical and of PBSt stimulation. In three fibers it was possible to inhibit almost completely the background PAD elicited in one collateral while having little or no effect on the PAD in the other collateral. Changes in the intraspinal threshold of pairs of collaterals following electrical stimulation of segmental nerves and of the somato-sensory cortex were examined in three fibers with a type B and two fibers with a type C PAD pattern. In four fibers the PAD elicited by stimulation of cutaneous (4-20xT) and muscle nerves (1.54-3.7xT), or by stimulation of the sensory-motor cortex, was of different magnitude in the two collaterals. In two experiments it was possible to find cortical sites in which weak surface stimulation produced PAD in one collateral only. (ABSTRACT TRUNCATED)  相似文献   

9.
10.
A combination of immunocytochemical and electron microscopic methods were employed to assess the organization of the trigeminal (V) spinal tract in adult rats. Immunostaining was employed at the light microscopic level to selectively label large myelinated (by using antibodies against neurofilament protein) and small unmyelinated (by using antibodies against calcitonin gene-related peptide) primary afferents. In addition, the plant lectin Bandeiraea simplicifolia-I was employed to histochemically label small unmyelinated primary afferents. Results from these experiments indicated that larger myelinated axons were distributed throughout the cross-sectional extent of the V spinal tract (TrV), whereas smaller fibers were most numerous just below the pial surface. These results were confirmed with quantitative electron microscopy which demonstrated that the central portion of the V sensory root and TrV were composed primarily of larger myelinated fibers, whereas the periphery of the root and the portion of TrV just below the pial surface contained a higher percentage of smaller myelinated and unmyelinated axons. When considered together with results regarding the birthdates of neurochemically defined classes of V ganglion cells (White et al. [1994] J. Comp. Neurol. 350:397-411), these results suggest that TrV is laid down in a chronotopic fashion with the first axons forming its deeper portion and later arriving axons being added more superficially.  相似文献   

11.
The effect of topical application of human recombinant interleukin-1 beta (IL-1) on afferent sensory transmission to the neurones in the primary somatosensory (SI) cortex was determined in anesthetized rats. Quantitative determination of the effect of IL-1 was made by generating post-stimulus time histograms of unit responses to the stimulation of receptive field. IL-1 (0.01, 0.1, 1.0 U) significantly facilitated afferent sensory transmission in SI cortical neurones (n = 22). IL-1-induced facilitation fully recovered by 60 min after drug. In control experiments (n = 10), saline solution containing 0.2 bovine serum albumin, used as a vehicle, did not affect afferent sensory transmission. Our results suggest that IL-1 may be involved in the processing of afferent sensory information in the SI cortex of rats.  相似文献   

12.
The pathway from the entorhinal cortical region to the hippocampal formation has previously been shown to be comprised of two sub-systems, one of which projects predominantly to the ipsilateral fascia dentata and regio inferior of the hippocampus proper, and a second which projects bilaterally to regio superior. The goal of the present investigation was to determine if these two pathways might originate from different cell populations within the entorhinal area. The cells of origin of these entorhinal pathways were identified by retrograde labeling with horseradish peroxidase (HRP). Injections which labeled the entorhinal terminal fields in both the fascia dentata and regio superior resulted in the retrograde labeling of two populations of cells in the entorhinal area. Ipsilateral to the injection, HRP reaction product was found in the cells of layer II (predominantly stellate cells) and the cells of layer III (predominantly pyramidal cells). Contralateral to the injections, however, the reaction product was found almost exclusively in the cells of layer III. With selective injections of the entorhinal terminal field in regio superior, only the cells of layer III were labeled, but these were labeled bilaterally. Selective injection of the entorhinal terminal field in the fascia dentata, however, resulted in the labeling of cells of layer II, but not of layer III, and these cells of layer II were labeled almost exclusively ipsilaterally. A very small number of labeled cells in layer II were, however, found contralateral to the injection as well. No labeled cells were found either in the presubiculum or parasubiculum following injections of the hippocampal formation. These cell populations were found capable of retrograde transport of HRP, however, since cells in both presubiculum and parasubiculum were labeled following HRP injections into the contralateral entorhinal area. These results suggest that the projections to the fascia dentata originate from the cells of layer II, while the projections to regio superior originate from the cells of layer III of the entorhinal region proper. The very slight crossed projection from the entorhinal area to the contralateral area dentata probably originates from the small population of cells in layer II which are labeled following HRP injections in the contralateral area dentata.  相似文献   

13.
14.
15.
The existence of an infrared sensory neuron group with ascending fibers which directly reach the optic tectum in Crotaline snakes was confirmed with three methods. (1) With the retrograde horseradish peroxidase (HRP) method, labeled neurons were not found within the nucleus descendens lateralis nervi trigemini (DLV), but in an unnamed cell group located immediately ventral to the DLV of the contralateral side at the transitional portion between the nucleus oralis (DVo) and the nucleus interpolaris (DVi). This unnamed cell group, which was seen only in the Crotalinae, was provisionally called the 'new nucleus'. (2) Normal brain series of 15 species were stained by the methods of Bodian-Otsuka, Klüver-Barrera and Nissl staining to compare the cytoarchitecture of the medulla oblongata. The 'new nucleus' was found only in species belonging to the Crotalinae. This nucleus was situated in fiber tracts which appeared to correspond to the lemniscus spinalis and tractus spino-cerebellaris of the reptilian medulla oblongata, and contained medium-sized multipolar or fusiform neurons. (3) In an electrophysiological study 16 single units responding unimodally to an infrared stimulus were recorded. Three of these recording sites were determined with Pontamine sky blue marking to be near or within the 'new nucleus'.  相似文献   

16.
17.
The intracortical arborizations of neurons from the ventroposterolateral thalamic nucleus (VPL) in the cat were studied by intraaxonal injections of horseradish peroxidase (HRP) following identification of their receptive fields. In the primary somatic sensory cortex (SI) VPL cells terminated in different cytoarchitectonic areas according to their receptive field modality. Fibers excited by deep tissue or joint rotation arborized preferentially in area 3a. Those responding tonically to cutaneous stimuli were located in the anterior part of area 3b; hairdriven cells terminated in area 3b and in the rostral pole of area 1. All fibers had a similar laminar distribution within SI. Axons terminated mostly in layers VI, iV, and the lower part of layer III. None terminated in layers I and II. Most terminal arbors were oriented along the mediolateral axis of the brain. The main arborization of a single VPL cell formed a bush of about 500 micrometers in diameter. some fibers generated two such bushes with an uninvaded region of about 300 micrometer between them. It is proposed that this patchy organization underlies in part the columnar organization of areas SI. Many VPL cells had secondary projection sites in SI. These were issued from smaller-sized collaterals and were located in a different cytoarchitectonic area than that of the main terminal plexuses. A significant number of these collaterals projected to area 4, Insufficient filling of the collaterals by HRP prevented a more complete characterization of the secondary arbors.  相似文献   

18.
The nitric oxide (NO)-cGMP signaling system is thought to play important roles in the function of the olfactory system in both vertebrates and invertebrates. One way of studying the role of NO in the nervous system is to study the distribution and properties of NO synthase (NOS), as well as the soluble guanylyl cyclases (sGCs), which are the best characterized targets of NO. We study NOS and sGC in the relatively simple and well characterized insect olfactory system of the hawkmoth, Manduca sexta. We have cloned Manduca sexta nitric oxide synthase (MsNOS) and two sGCs (MsGCalpha1 and MsGCbeta1), characterized their basic biochemical properties, and studied their expression in the olfactory system. The sequences of the Manduca genes are highly similar to their mammalian homologs and show similar biochemical properties when expressed in COS-7 cells. In particular, we find that MsGC functions as an obligate heterodimer that is stimulated significantly by NO. We also find that MsNOS has a Ca2+-sensitive NO-producing activity similar to that of mammalian neuronal NOS. Northern and in situ hybridization analyses show that MsNOS and the MsGCs are expressed in a complementary pattern, with MsNOS expressed at high levels in the antennae and the MsGCs expressed at high levels in a subset of antennal lobe neurons. The expression patterns of these genes suggest that the NO-sGC signaling system may play a role in mediating communication between olfactory receptor neurons and projection neurons in the glomeruli of the antennal lobe.  相似文献   

19.
Previous work suggests that slowly adapting (SA) periodontal afferents have different synaptic arrangements in the principal (Vp) and oral trigeminal nuclei and that the synaptic structure associated with transmitter release may be related directly to bouton size. The present study examined the ultrastructures of SA and fast adapting (FA) vibrissa afferents and their associated unlabeled axonal endings in the cat Vp by using intra-axonal labeling with horseradish peroxidase and a morphometric analysis. All SA and FA afferent boutons contained clear, round, synaptic vesicles. All the FA and most SA boutons were presynaptic to dendrites, but a few SA boutons were axosomatic. Both types of bouton were frequently postsynaptic to unlabeled axonal ending(s) containing pleomorphic, synaptic vesicles (P-ending). The size of labeled boutons was larger in FA than SA afferents, but the size of dendrites postsynaptic to labeled boutons was larger for SA than FA afferents. Large-sized FA and SA boutons made synaptic contacts with small-diameter dendrites. The size of FA and SA boutons was larger than that of their associated P-endings. A morphometric analysis made on the pooled data of SA and FA boutons indicated that apposed surface area, active zone number, total active zone area, vesicle number, and mitochondrial volume were highly correlated in a positive linear manner with labeled bouton volume. These relationships were also applicable to unlabeled P-endings, but the range of each parameter was smaller than that of the labeled boutons. These observations provide evidence that the two functionally distinct types of vibrissa afferent manifest unique differences but share certain structural features in the synaptic organization and that the ultrastructural "size principle" proposed by Pierce and Mendell ([1993] J. Neurosci. 13:4748-4763) for Ia-motoneuron synapses is applicable to the somatosensory system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号