首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
Tung's model was used to analyze anomalies observed in Ti/Si C Schottky contacts. The degree of the inhomogeneous Schottky barrier after annealing at different temperatures is characterized by the ‘T0anomaly' and the difference(△Φ)between the uniformly high barrier height(Φ0B) and the effective barrier height(Φeff B). Those two parameters of Ti Schottky contacts on 4H–Si C were deduced from I–V measurements in the temperature range of 298 K–503 K. The increase in Schottky barrier(SB) height(ΦB) and decrease in the ideality factor(n) with an increase measurement temperature indicate the presence of an inhomogeneous SB. The degree of inhomogeneity of the Schottky barrier depends on the annealing temperature, and it is at its lowest for 500-°C thermal treatment. The degree of inhomogeneity of the SB could reveal effects of thermal treatments on Schottky contacts in other aspects.  相似文献   

2.
Interracial barrier is a key factor that determines the performances of heterojunctions. In this work, we study the effect of manganite film thickness on the effective interracial barrier for La0.67Sr0.33MnO3/Nb:SrTiO3 junctions, The barrier is extracted from the forward current-voltage characteristics. Our results demonstrate that the barrier decreases gradually from -0.85 eV to -0.60 eV when the film thickness decreases from 150 nm to 2 nm. The overall value of the barrier is only about 50% of the corresponding one determined from the photovoltaic effect.  相似文献   

3.
Interfacial barrier is a key factor that determines the performances of heterojunctions.In this work,we study the effect of manganite film thickness on the effective interfacial barrier for La 0.67 Sr 0.33 MnO 3 /Nb:SrTiO 3 junctions.The barrier is extracted from the forward current-voltage characteristics.Our results demonstrate that the barrier decreases gradually from ~0.85 eV to ~0.60 eV when the film thickness decreases from 150 nm to 2 nm.The overall value of the barrier is only about 50% of the corresponding one determined from the photovoltaic effect.  相似文献   

4.
An oxide p–n heterojunction composed of Pr0.6Ca0.4MnO3film, with a charge order(CO) transition, and 1wt% Nbdoped SrTiO3substrate is fabricated, and the transport properties of the interface are experimentally studied. The rectifying behavior of the junction, well described by the Newman equation, is observed, indicating that tunneling is the dominant process by which the carriers pass through the interface. Above and below the CO transition temperature, satisfactory linear dependencies of junction resistance on temperature are observed, but the slopes of the two resistance-temperature relations are different. The CO process is believed to be relevant to this difference.  相似文献   

5.
《Current Applied Physics》2020,20(1):219-225
In this study, we investigated the effect of plasma treatment on an indium tin oxide (ITO) film under an ambient Ar atmosphere. The sheet resistance of the plasma-treated ITO film at 250 W (37.6 Ω/sq) was higher than that of the as-deposited ITO film (34 Ω/sq). Plasma treatment was found to decrease the ITO grain size to 21.81 nm, in comparison with the as-deposited ITO (25.49 nm), which resulted in a decrease in the Hall mobility. The work function of the Ar-plasma-treated ITO (WFITO=4.17 eV) was lower than that of the as-deposited ITO film (WFITO = 5.13 eV). This lower work function was attributed to vacancies that formed in the indium and oxygen vacancies in the bonding structure. Rear-emitter silicon heterojunction (SHJ) solar cells fabricated using the plasma-treated ITO film exhibited an open circuit voltage (VOC) of 734 mV, compared to SHJ cells fabricated using the as-deposited ITO film, which showed a VOC of 704 mV. The increase in VOC could be explained by the decrease in the work function, which is related to the reduction in the barrier height between the ITO and a-Si:H (n) of the rear-emitter SHJ solar cells. Furthermore, the performance of the plasma-treated ITO film was verified, with the front surface field layers, using an AFORS-HET simulation. The current density (JSC) and VOC increased to 39.44 mA/cm2 and 736.8 mV, respectively, while maintaining a WFITO of 3.8 eV. Meanwhile, the efficiency was 22.9% at VOC = 721.5 mV and JSC = 38.55 mA/cm2 for WFITO = 4.4 eV. However, an overall enhancement of 23.75% in the cell efficiency was achieved owing to the low work function value of the ITO film. Ar plasma treatment can be used in transparent conducting oxide applications to improve cell efficiency by controlling the barrier height.  相似文献   

6.
一般地,钛矿结构锰氧化物的电脉冲诱导电阻转变(EPIR) 效应源于非内禀界面处的肖特基势垒. 本文采用固相烧结法制备了La0.5Ca0.5MnO3 (LCMO)陶瓷样品, 用四线测量模式对样品电输运性质, 特别对其内禀EPIR效应和忆阻器行为进行了研究. 室温下, 尽管样品在四线测量模式下的I-V特性曲线呈欧姆线性规律, 但在适当的脉冲电压刺激下, 仍能诱导产生明显、稳定的EPIR效应. 通过与二线模式的界面EPIR比较, 发现LCMO内禀EPIR效应具有更小的脉冲临界电压、更好的稳定性和抗疲劳特性, 是稀土掺杂锰氧化物中观察到的一类新颖的EPIR效应. 关键词: 钙钛矿结构锰氧化物 电致电阻效应 电脉冲诱导电阻转变效应 肖特基势垒  相似文献   

7.
In this work, we introduce polyaniline–nickel ferrite (PANI-NF) nanostructured composite to detect liquefied petroleum gas (LPG) at room temperature. The composite synthesized by relatively simple method of in-situ chemical polymerization was structurally characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The presence of characteristic absorption bands of both PANI and NF in the FTIR spectrum of the composite with small shifts confirmed interfacial interaction of PANI with NF. The XRD studies also confirmed interfacial interaction between PANI and NF in the composite and its crystalline nature with an average crystallite size of 20 nm. Highly agglomerated granular porous morphology favourable for LPG adsorption was revealed by SEM image of the composite. The TEM image of the composite clearly showed nanosized NF particles embedded in PANI matrix. The LPG sensing performance of the composite at room temperature was tested using a film prepared by depositing the composite on an ordinary glass substrate by cost-effective spin coating technique. The maximum sensing response of the composite was found to be 57% at 700 ppm of LPG, with a response time of 50 s and a recovery time of 200 s. The composite was found to be stable for a period of one month. The sensing mechanism has been discussed on the basis of formation of interfacial p–n heterojunction barrier.  相似文献   

8.
采用磁控溅射方法在Nb07%-SrTiO3基片上制作Au薄膜接触,并在氧气气氛下750℃退火30 min,在室温环境下测量电流电压和电容电压等特性曲线,观测整流特性,根据相应实验数据采用饱和电流法、电容C-2与反偏电压V成线性关系计算肖特基势垒的大小.  相似文献   

9.
Schottky势垒高度理论计算中的平均键能方法   总被引:2,自引:0,他引:2       下载免费PDF全文
李书平  王仁智 《物理学报》2003,52(3):542-546
以平均键能Em作为参考能级,计算了10种不同半导体的Schottky接触势垒高度,计算值与实验值符合较好-计算值与实验值的符合程度与Tersoff的电中性能级EB方法相当,优于Harrison和Cardona等人采用sp3平均杂化能εh和介电函数隙中能级ED的计算结果- 关键词: 势垒高度 平均键能方法 费米能级  相似文献   

10.
采用美国滨州大学研发的AMPS-1D软件,模拟了TCO与非晶硅界面势垒对TCO/a-Si:H(p+)/a-Si:H(i)/c-Si(n)/a-Si:H(i) /a-Si:H(n+)/TCO双面HIT异质结太阳电池光伏特性的影响.结果表明太阳电池的TCO/p+前接触界面势垒(对于电子)越高,越易形成欧姆接触,且电池的短波响应增强,使电池性能变好.模拟还发现,n+/TCO背接触界面势垒(对于电子)越低,电池性能越好.若背场重掺杂,在背接触势垒小于等于0.5 eV时,电池的转换效率不会受到背接触势垒的影响;若背场低掺杂,在背接触势垒很小的情况下,也能达到与重掺杂相同的转换效率.  相似文献   

11.
The segregated graphene oxide(GO)/ultra-high-molecular-weight polyethylene (UHMWPE) composite films with various interfacial adhesion property were prepared by mechanical blending method from UHMWPE, GO, dodecyl amine (DA) functionalized graphene oxide(DA–GO) or uniform DA–GO/high density polyethylene (DA–GO/HDPE) powder. The results of XRD and XPS indicated that DA chain was successfully grafted onto GO sheets via a chemical method, which enhanced the interfacial adhesion between UHMWPE particles and GO sheets. The characterizations of POM and SEM proved that good segregated structure was only obtained in DA–GO/UHMWPE or DA–GO/HDPE/UHMWPE composite. Strong interfacial adhesion between fillers and matrix exhibits positive effect on gas barrier property. Compared to the GO/UHMWPE composite film, dramatic decrease in O2 permeability coefficient by 42.2 and 48.1%, from 15.4 × 10?14 to 8.9 × 10?14 and 8.0 × 10?14 cm3 cm cm?2 s?1 Pa?1, is achieved upon the addition of only 0.5 wt% fillers, respectively. The DSC results demonstrated that the enhanced gas barrier performance was ascribed to the strong interfacial adhesion between DA–GO/HDPE and UHWMPE matrix, rather than the crystallinity of UHWMPE matrix. Additionally, the decrease in UHMWPE particle size might be conducive to improving the gas barrier property of composite films due to the formation of more isolation layers perpendicular to the film plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号