首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure formation and crystallization kinetics in crystallization from a disordered melt were investigated for a polyethylene-polyisoprene block copolymer (LEI) having Mn = 3.2 × 104 and 53 wt% of polyethylene content and for its blends with the corresponding homopolymers, polyethylene (PE) and polyisoprene (PIp), using synchrotron small-angle X-ray scattering techniques (SAXS) and differential scanning calorimetry (DSC). For LEI copolymer and the blends, no microphase separation structure was observed in the molten state. In the crystalline state of the neat LEI, the first and higher order scattering peaks were clearly observed, in which the intensity of the higher order peaks was considerably strong. This unusual behavior of the higher order peaks was explained by the lamellar insertion model of Hama and Tashiro. From the analyses based on this model and one-dimensional electron density correlation function with a three phase model, the phase structure in the crystalline state of the neat LEI was concluded to be a regular lamellar structure consisting of crystalline lamella of PE block and amorphous layers of PE and PIp blocks. This phase structure was quite different from that reported previously for a polyethylene-polyisoprene block copolymer (HEI) with a higher molecular weight in which HEI crystallized with keeping the microphase separation structure in the melt. For the blends of LEI with PIp homopolymer, the phase structure is affected by the blend composition, while for the blends with PE homopolymer, the phase structure depended on the crystallization temperature as well as the molecular weight and composition of the added PE. The Avrami index was 2-3 for neat LEI, all blends and PE homopolymers.  相似文献   

2.
The temperature-composition phase diagrams for six pairs of diblock copolymer and homopolymer are presented, putting emphasis on the effects of block copolymer composition and the molecular weight of added homopolymers. For the study, two polystyrene-block-polyisoprene (SI diblock) copolymers having lamellar or spherical microdomains, a polystyrene-block-polybutadiene (SB diblock) copolymer having lamellar microdomains, and a series of polystyrene (PS), polyisoprene (PI), and polybutadiene (PB) were used to prepare SI/PS, SI/PI, SB/PS, and SB/PB binary blends, via solvent casting, over a wide range of compositions. The shape of temperature-composition phase diagram of block copolymer/homopolymer blend is greatly affected by a small change in the ratio of the molecular weight of added homopolymer to the molecular weight of corresponding block (MH,A/MC,A or MH,B/MC,B) when the block copolymer is highly asymmetric in composition but only moderately even for a large change in MH,A/MC,A ratio when the block copolymer is symmetric or nearly symmetric in composition. The boundary between the mesophase (M1) of block copolymer and the homogeneous phase (H) of block copolymer/homopolymer blend was determined using oscillatory shear rheometry, and the boundary between the homogeneous phase (H) and two-phase liquid mixture (L1+L2) with L1 being disordered block copolymer and L2 being macrophase-separated homopolymer was determined using cloud point measurement. It is found that the addition of PI to a lamella-forming SI diblock copolymer or the addition of PB to a lamella-forming SB diblock copolymer gives rise to disordered micelles (DM) having no long-range order, while the addition of PS to a lamella-forming SB diblock copolymer retains lamellar microdomain structure until microdomains disappear completely. Thus, the phase diagram of SI/PI or SB/PB blends looks more complicated than that of SI/PS or SB/PS blends.  相似文献   

3.
The crystalline morphology formed in binary blends of poly(ε-caprolactone)- block-polyethylene (PCL-b-PE) copolymers and PCL homopolymers has been examined using synchrotron small-angle X-ray scattering (SR-SAXS) and differential scanning calorimetry (DSC) as a function of the homopolymer fraction in the blend. The PE block crystallized first on quenching from a lamellar microdomain structure to set a hard lamellar morphology (PE lamellar morphology) in the blend, followed by the crystallization of PCL chains (i.e., PCL homopolymers + PCL blocks). Two binary blends were studied by considering the miscible state of PCL homopolymers in the microdomain structure: when the PCL homopolymers were uniformly mixed with PCL blocks, they formed a mixed crystal. When the PCL homopolymers were localized between PCL blocks in the microdomain structure, DSC results suggested the possible formation of separate PCL crystals in the PE lamellar morphology. The effect of the advance crystallization of PE blocks on the subsequent crystallization of PCL chains was discussed as compared with the crystalline morphology formed in PCL-block-polybutadiene copolymer/PCL homopolymer blends, where the crystallization of PCL chains started directly from a microdomain structure without forming the hard lamellar morphology.  相似文献   

4.
Biaxially oriented films of blends of high-density polyethylene (HDPE) with polypropylene (PP) homopolymer and PP copolymers prepared by twin-screw extrusion and lab-stretcher have been investigated by scanning electron microscopy (SEM), polarized microscopy, differential-scanning calorimeter, and universal testing machine. Three different kinds of PP copolymers were used: (i) ethylene–propylene (EP) random copolymer; (ii) ethylene–propylene (EP) block copolymer; (iii) ethylene–propylene–buttylene (EPB) terpolymer. In the SEM study of the morphology of films of HDPE with various PP blends, phase separation is observed between the PP phase and the HDPE phase for all blends and compositions. In all blends, HDPE serves to reduce the average spherulites size, probably acting as a nucleating agent for PP. The reduction of spherulite size appeared most significantly in the blend of EPB terpolymer and HDPE. A large increase of crystallization temperature was found in the blend of EPB terpolymer and HDPE compared with the unblended EPB terpolymer. For the blend of EPB terpolymer and HDPE, the improvement of tensile strength and modulus is observed with an increase of HDPE content, and this can be considered as a result of the role of HDPE in reducing average spherulite size. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The melting and crystallization behaviours of a polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) diblock copolymer and a PE homopolymer were investigated using multiple heating and cooling rate differential scanning calorimetry (DSC) experiments, and modelling of the crystallization kinetics and lamellar thickness distribution. This new model was first validated applying literature and experimental data. The model‐predicted morphology (n = 3.2) closely matched the spherulitic morphology (n = 3), which was determined using polarized optical microscopy. For each experimental cooling rate, the model predicted diblock copolymer crystallinity that well matched the entire DSC crystallinity curve, notably for an Avrami–Erofeev index of n = 2; and apparent crystallization activation energy that hardly varied with the cooling rates used, relative crystallinity (α), and crystallization temperature or time. This disfavours the concept of variable activation energy. The use of the right crystallization model and parameter estimation algorithm is important for addressing the mathematical artefact. Under non‐isothermal cooling, the PE‐b‐PMMA diblock copolymer, as per the model prediction, crystallized without confinement (n ≠ 1), preserving the cylindrical structure. From the characteristic shapes of the crystallization function f(α(T)) versus 1/T and crystallization rate versus α plots, the resulting Tcmax and narrow αmax range can guide the search for an appropriate crystallization model. The overall treatment illustrated in this study is not restricted to a PE homopolymer and a PE‐b‐isotactic PMMA block copolymer. It can be generally applied to crystalline homopolymers and copolymers (alternating, random and block), as well as their blends. The block copolymers and blends can be crystalline–amorphous as well as crystalline–crystalline. © 2014 Society of Chemical Industry  相似文献   

6.
The mechanical properties and morphology of melt mixed polystyrene (PS)/polyethylene (PE) blends that were modified by the addition of up to 16% of a semicrystalline PS-b-hPB (hydrogenated polybutadiene) diblock copolymer with varying molecular weight are reported. As a result of the blocks of the copolymer penetrating the corresponding homopolymers, these diblock copolymers are capable of reinforcing the PS/PE interface significantly. This increase in interfacial strength between the immiscible blend components does not necessarily result in an improvement in the mechanical properties of the blends as measured by Izod or tensile tests. This may be because the effect of the copolymers on the rheological properties of the blends during processing outweighs their emulsifying/reinforcing effects. If found to be universally true for polymer blends, these results suggest that the relationship between the effects of copolymers on interfacial strength, their emulsifying effects, and the mechanical properties of copolymer modified blends are not as simple as suggested by many statements found in the literature.  相似文献   

7.
The development of the morphology and the alignment of lamellae in melt elongation of blends of an asymmetric linear styrene‐butadiene block copolymer (LN3) and polystyrene (PS 158K) was investigated. PS 158K and LN3 formed two‐phase polymer blends with PS 158K resp. LN3 inclusions, depending on the concentration of polystyrene. The block copolymer was arranged in a lamellar phase with a lamellae thickness of ~ 13 nm. Our rheological experiments revealed that the complex modulus, the elongational viscosity and the recovered stretch of the blends primarily resulted from a superposition of the properties of the blend components. In melt elongation, pure LN3 started to crumple at a small Hencky strain. In the blends, the presence of the PS 158K inclusions led to a macroscopically more uniform elongation, but with an anisotropic Poisson ratio. The LN3 inclusions in the PS 158K matrix were deformed into a filament‐like shape. In the blends with a LN3 matrix the alignment of the block copolymer lamellae parallel to the loading direction increased with applied extensional strain. In the latter case, the lamellae thickness did not decrease significantly. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The crystallization behavior of semicrystalline PEO homopolymer/triblock PS‐PEO‐PS copolymer blend system, which exhibited “Dry‐Brush” in the melt. A symmetric polystyrene–poly(ethylene oxide)–polystyrene triblock copolymer was blended with PEO homopolymer (h‐PEO) having the same molecular weight as that of the PEO block in the copolymer. Considering the composition of the blend (Wps ≥ 0.8), PEO spheres were formed in the blend. Because of the dry‐brush phase behavior of this blend, h‐PEO added was localized in the PEO microdomains, which increases the domain size without changing the microdomain morphology. The crystallization of PEO block was confined within the microdomains and the crystallization temperature was about 60°C lower than normal. Self‐seeding tests were performed to clarify the nucleation mechanism of the blend. Because the droplets size varies greatly, multicrystallization peaks were witnessed in the self‐seeding process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
The crystallization behavior of two molecular weight poly(ethylene oxide)s (PEO) and their blends with the block copolymer poly(2‐vinyl pyridine)‐b‐poly(ethylene oxide) (P2VP‐b‐PEO) was investigated by polarized optical microscopy, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy (AFM). A sharp decreasing of the spherulite growth rate was observed with the increasing of the copolymer content in the blend. The addition of P2VP‐b‐PEO to PEO increases the degradation temperature becoming the thermal stability of the blend very similar to that of the block copolymer P2VP‐b‐PEO. Glass transition temperatures, Tg, for PEO/P2VP‐b‐PEO blends were intermediate between those of the pure components and the value increased as the content of PEO homopolymer decreased in the blend. AFM images showed spherulites with lamellar crystal morphology for the homopolymer PEO. Lamellar crystal morphology with sheaf‐like lamellar arrangement was observed for 80 wt% PEO(200M) and a lamellar crystal morphology with grain aggregation was observed for 50 and 20 wt% blends. The isothermal crystallization kinetics of PEO was progressively retarded as the copolymer content in the blend increased, since the copolymer hinders the molecular mobility in the miscible amorphous phase. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
BACKGROUND: The phase behaviour of copolymers and their blends is of great interest due to the phase transitions, self‐assembly and formation of ordered structures. Phenomena associated with the microdomain morphology of parent copolymers and phase behaviour in blends of deuterated block copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA), i.e. (dPS‐blockdPMMA)1/(dPS‐block‐PMMA)2, were investigated using small‐angle X‐ray scattering, small‐angle neutron scattering and transmission electron microscopy as a function of molecular weight, concentration of added copolymers and temperature. RESULTS: Binary blends of the diblock copolymers having different molecular weights and different original micromorphology (one copolymer was in a disordered state and the others were of lamellar phase) were prepared by a solution‐cast process. The blends were found to be completely miscible on the molecular level at all compositions, if their molecular weight ratio was smaller than about 5. The domain spacing D of the blends can be scaled with Mn by DMn2/3 as predicted by a previously published postulate (originally suggested and proved for blends of lamellar polystyrene‐block‐polyisoprene copolymers). CONCLUSIONS: The criterion for forming a single‐domain morphology (molecularly mixed blend) taking into account the different solubilization of copolymer blocks has been applied to explain the changes in microdomain morphology during the self‐assembling process in two copolymer blends. Evidently the criterion, suggested originally for blends of lamellar polystyrene‐block‐polyisoprene copolymers, can be employed to a much broader range of block copolymer blends. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
The influence of morphology on micromechanical deformation behaviour of blends consisting of a lamellar forming styrene/butadiene star block copolymer and polystyrene homopolymer (hPS) was studied by transmission electron microscopy (TEM). The pure star block copolymer and the microphase separated blends revealing lamellar structure with polystyrene (PS) lamella thickness in the range of about 20 nm showed homogeneous plastic deformation of the PS lamellae. The macrophase separated blends with PS particles in lamellar matrix exhibited debonding at the particle–matrix interface associated with extensive plastic deformation of the surrounding matrix. The blends containing PS matrix deformed via crazing.  相似文献   

12.
Gerald H. Ling 《Polymer》2009,50(20):4917-4925
Crystalline crosslinked polyethylene microparticles with size distribution averages ranging from 0.374 to 0.944 μm were prepared from immiscible PS and PE blends in the melt phase for microgel applications. The particles were crosslinked either concurrently while blending using dicumyl peroxide or post blending via electron-beam irradiation. The effects of varying the processing temperature, blend duration, and block copolymer compatibilizer content on the particle morphology were studied and it was found that only a decrease in processing temperatures (increase in continuous-to-dispersed phase viscosity ratio) resulted in finer particles for the range of variables tested. The chemical composition of the isolated particles was determined using infrared and nuclear magnetic resonance spectroscopy while the particle morphology was investigated using electron microscopy image analysis in conjunction with thermogravimetric analysis. It was determined that particles produced with and without the block copolymer contained a small amount of PS even after meticulous extraction with a PS solvent (THF). However, the exact location of PS on the PE particles remains obscure.  相似文献   

13.
In a blend of two immiscible polymers a controlled morphology can be obtained by adding a block or graft copolymer as compatibilizer. In the present work blends of low‐density polyethylene (PE) and polyamide‐6 (PA‐6) were prepared by melt mixing the polymers in a co‐rotating, intermeshing twin‐screw extruder. Poly(ethylene‐graft‐polyethylene oxide) (PE‐PEO), synthesized from poly(ethylene‐co‐acrylic acid) (PEAA) (backbone) and poly(ethylene oxide) monomethyl ether (MPEO) (grafts), was added as compatibilizer. As a comparison, the unmodified backbone polymer, PEAA, was used. The morphology of the blends was studied by scanning electron microscopy (SEM). Melting and crystallization behavior of the blends was investigated by differential scanning calorimetry (DSC) and mechanical properties by tensile testing. The compatibilizing mechanisms were different for the two copolymers, and generated two different blend morphologies. Addition of PE‐PEO gave a material with small, well‐dispersed PA‐spheres having good adhesion to the PE matrix, whereas PEAA generated a morphology characterized by small PA‐spheres agglomerated to larger structures. Both compatibilized PE/PA blends had much improved mechanical properties compared with the uncompatibilized blend, with elongation at break b) increasing up to 200%. Addition of compatibilizer to the PE/PA blends stabilized the morphology towards coalescence and significantly reduced the size of the dispersed phase domains, from an average diameter of 20 μm in the unmodified PE/PA blend to approximately 1 μm in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2416–2424, 2000  相似文献   

14.
In this work we present the results of a mesoscopic dynamic simulation study of ordered microphases modification in asymmetric-copolymer/homopolymer binary blends, where we explore the influence of the composition, packing density and solubilization of homopolymer chains into the compatible microdomains of the asymmetric copolymer. The poly(styrene)-poly(isoprene) (PS-PI) and homopoly(styrene) (HPS) molecules were built and represented by Gaussian chain models. The pure asymmetric copolymer generates spherical microdomains of poly(styrene) (PS) in the matrix of majority component, poly(isoprene) (PI), and is taken as the base for the binary blends. The mesoscopic dynamic evolution of asymmetric-PS-PI/HPS blends display a coarse-grained system sufficiently large to determine the separation of the microphase and the formation of ordered structures. The HPS chains tend to be selectively solubilized in the PS microdomains of the asymmetric copolymer, the repulsive interaction forces between homopoly(styrene) and poly(isoprene) chains assure that essentially all the HPS homopolymer exists in the PS microdomains. As the asymmetric-PS-PI/HPS composition is varied the mesoscale simulations predict ordered structures with defined morphologies of body-centred-cubic (BCC), hexagonal packed cylinders (HPC), hexagonal perforated layers (HPL) and lamellar phases (LAM). Ordered microphases appear in reverse order when the homopoly(styrene) composition is increased in the binary blend. The agreement between our mesoscopic simulation results and available experimental outcome open a new strategy to modify the microphase morphology of asymmetric copolymers.  相似文献   

15.
Thermal conductivities of two series of blends of polystyrene and styrene–ethylene/butyrene–styrene block copolymer (PS/SEBS), and polyethylene and styrene-ethylene/butylene-styrene block copolymer (PE/SEBS) were measured. Here the PS part and hydrogenated polybutadiene (EB; ethylene-butene-1 copolymer) part of SEBS were confirmed to be miscible in PS and PE homopolymers, respectively, by the differential scanning calorimetry. The thermal conductivity of PS/SEBS increased, while that of PE/SEBS blends decreased monotonically, with increasing SEBS content. No significant changes in the range where microphases usually occur were noted. The thermal conductivities of PS/SEBS and PE/SEBS were explained by modifications of our equation for composites. Thermal conductivity of EB in SEBS was estimated from that of PS/SEBS blend as 4.9 × 10?4 cal/s cm °C. Further, the thermal conductivity of PE/SEBS could be predicted by substituting the obtained value of EB into the modified equation. Therefore, the modified equations were confirmed to be applicable to thermal conductivities of PE/SEBS and PE/SEBS blends. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
In this study, immiscible blends of HDPE and an amorphous glassy polymer were compatibilized with styrene-hydrogenated butadiene block copolymers. The glassy phase consisted of either pure PS or a miscible blend of PS and polyether copolymer (PEC); PEC is similar to poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). The morphology of these two-phase mixtures depended on physical characteristics of the components and the method of fabrication. Suitable copolymers increased the degree of dispersion and minimized heterogeneities resulting from the inherent incompatibility of the individual phases. Further reduction in the phase size and increased adhesion between the components of modified blends were achieved by increasing the composition of PEC in the glassy phase. It was concluded that favorable exothermic mixing between PEC and PS endblocks of the copolymers provided an additional driving force for compatibilization. Results from dynamic mechanical thermal analysis suggests that penetration by the copolymers into the homopolymer phases is not complete.  相似文献   

17.
Vivek Thirtha  Thomas Nosker 《Polymer》2006,47(15):5392-5401
The effects uncompatibilized immiscible polymer blend compositions on the Tg of the amorphous polymer were studied in the systems polystyrene/polypropylene (PS/PP), polystyrene/high density polyethylene (PS/PE) and polycarbonate/high density polyethylene (PC/PE). In the two similar systems of PS/PP and PS/PE, the Tg of PS increased with decreasing PS percentage in the blends. This variation in glass transition is attributed to the polymer domain interactions resulting from the different morphologies of various blend compositions. Experiments were conducted to study these effects by preparing blends with various polymers that varied the relationship between the Tg of the amorphous polymer and the crystallization behavior of the semicrystalline polymer. Results show that the variation in amorphous component Tg with composition depends strongly on the physical state of the semicrystalline domains. Whereas the Tg of PS in PS/PE blends changed with composition, the Tg of PC in the PC/PE blend did not change with composition.  相似文献   

18.
A comparison was made of the fineness of dispersion in immiscible polymer blends achieved by a continuous mechanical alloying technique, solid-state shear pulverization, relative to that achieved by melt mixing. Two polymer blend systems were investigated. A polystyrene (PS)/polyethylene (PE) wax blend was studied because, based on a classic analysis by G.I. Taylor, melt mixing was expected to yield a number-average dispersed-phase domain size, Dn, well above 1 μm. A PS/high density polyethylene (HDPE) blend was also studied because it was known to produce a sub-micron number-average dispersed-phase particle size when mixed by twin-screw extrusion. In the case of the PS/PE wax blend at compositions ranging from 1 to 15 wt% polyethylene wax, pulverization resulted in nearly identical Dn values (typical value of 0.7 μm) independent of minor-phase content; these Dn values were an order of magnitude smaller than the anticipated Taylor limit for melt-mixed blends. In contrast, PS/PE wax blends made by batch, intensive melt mixing yielded Dn values between ∼3 μm at both 1 and 5 wt% minor-phase content and 17.5 μm at 15 wt% minor-phase content. The increase in Dn with increasing dispersed-phase content in the melt-mixed blend is a consequence of coalescence present during melt processing; such effects are disallowed in the pulverization process occurring in the solid state. Scanning electron microscopy of a 95/5 wt% PS/HDPE blend provided Dn values of 500 and 270 nm in the twin-screw extruded and pulverized samples, respectively. Fractionated crystallization studies further corroborated the ability of pulverization to result in a finer, nanoscopic dispersion of the minor phase as compared to extrusion.  相似文献   

19.
讨论了不同第三组分和不同种聚乙烯对以聚苯乙烯为基质的PS/PE共混体系结构和性能的影响,发现苯乙烯-丁二烯-苯乙烯嵌段共聚物和苯乙烯-氢化丁二烯-苯乙烯嵌段共聚物作为第三组分对PS/PE共混体系均具有增容作用,用SBS的效果比SEBS好,而SBS的结构对增韧效果的影响不大。在SBS存在下,LLDPE对PS增韧效果最好,HDPE次之,LDPE最差。  相似文献   

20.
Hydrogenated segmented poly[butadiene-block-(styrene-block-butadiene)n] block copolymers, which were developed by use of a polymeric iniferter technique, were tested on their compatibilizing effectiveness for (10/90) LDPE/PS blends. They were found to be effective compatibilizers for this mixture, already giving a pronounced improvement in both tensile strength and strain of the blend at block copolymer concentrations of one percent. A concentration of five weight percent of segmented block copolymer provided a tenfold improvement in blend toughness. The effectiveness of the segmented block copolymers was found be dependent on the block copolymer composition. Block copolymer compositions of close to 50 : 50 EB : PS gave the best results. Received: 23 September 1996/Revised: 4 November 1996/Accepted: 7 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号