首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
鲁米诺-铁氰化钾化学发光体系测定双嘧达莫   总被引:2,自引:0,他引:2  
在碱性条件下,铁氰化钾氧化鲁米诺产生化学发光,双嘧达莫对该体系的化学发光有显著的增强作用。基于此并结合流动注射技术建立了测定双嘧达莫的新方法。该方法检出限为5.7×10-11g mL(IUPAC),线性范围为1.0×10-10~5.0×10-8g mL,对5.0×10-9g mL双嘧达莫平行测定11次,其相对标准偏差为1.9%。  相似文献   

2.
研究了PAR在酸性介质中质子化后与NO2-和SCN形成三元离子缔合物的最佳条件,提出了吸光光度法测定微量NO2-的新方法.在稀H2SO4介质中,三元离子缔合物的最大吸收峰位于370nm处,表观摩尔吸光系数为1.25×104L@mol-1@cm,NO2-含量在0~50μg/25ml范围内符合比耳定律.方法用于环境水样中微量NO2-的测定,结果满意.  相似文献   

3.
铁氰化钾在碱性条件能氧化鲁米诺而发光,左旋多巴能大大增强该发光强度。基于此现象并结合流动注射技术,建立起一种直接测定左旋多巴的流动注射化学发光分析法。方法检出限为1.2×10-10g mL,左旋多巴质量浓度在5 0×10-10~5.0×10-8g mL范围内与发光强度呈良好的线性关系。相对标准偏差为2.9%(左旋多巴5.0×10-9g mL,n=11)。该方法可用于片剂中左旋多巴量的测定。  相似文献   

4.
研究了Co(Ⅱ)-4-(2-吡啶偶氮)间苯二酚(PAR)-聚乙二醇(PEG)-(NH4)2SO4体系的萃取行为及最佳分相条件,建立了测定生物样品中微量钴的非有机溶剂萃取光度法。结果表明,在pH 8.6的六次甲基四胺缓冲溶液中,在(NH4)2SO4存在下,Co(Ⅱ)-PAR的络合物可被PEG相富集萃取。在PEG相中络合物的最大吸收波长为519 nm,表观摩尔吸光系数4.68×104L.mol-1.cm-1,钴量在0~1.8μg/mL范围内服从比尔定律。方法已用于粮食、茶叶等生物样品中痕量钴的测定,回收率97.2%~103%。  相似文献   

5.
试验发现依诺沙星对鲁米诺与铁氰化钾之间的化学发光反应具有显著的增敏作用,而且当依诺沙星浓度在2.0×10-8~2.0×10-5mol·L-1范围内,与相应的化学发光增强信号值(△I)之间呈线性关系,其检出限(3S)为5.7×10-9mol·L-1,取1.0 × 10-6mol·L-1依诺沙星按试验方法测定11次,算得其相对标准偏差为1.75%.结合应用流动注射技术,提出了流动注射-化学发光法(FI-CL)测定药片中依诺沙星的方法,应用此方法分析了3个依诺沙星片剂试样,所测得的结果与其标示值相符.按标准加入法作了回收率试验,所得结果在96.7%~103.0%之间.  相似文献   

6.
在pH =6 .5的磷酸盐缓冲溶液中 ,钒 (V)与 4 (2 吡啶偶氮 ) 间苯二酚生成紫色络合物 ,络合物的最大吸收波长为 5 5 0nm ,表观摩尔吸光系数为 5 .2 8× 10 4L/ (mol·cm) ,工作曲线的线性范围为 0~ 10 0 μg/ (5 0mL) ,测定结果的相对标准偏差为 2 .4 0 %~ 3.2 0 % ,回收率为 97.0 %~ 10 2 .0 %。  相似文献   

7.
在弱酸性溶液中,Fe3 -PAR络合物可发生光化学还原反应生成Fe2 -PAR络合物。研究了溶液酸度、光强度、有机酸、PAR溶液浓度对Fe3 -PAR络合物光化学还原反应的影响,并对反应机理作了初步探讨。在pH4.5HAc-NaAc缓冲溶液中,PAR浓度为1.8×10?4mol/L,125W高压汞灯照射15min,Fe3 -PAR络合物的光化学还原反应趋于完全。Fe2 浓度在0.12~3.2mg/L范围内符合比尔定律;检出限为0.025mg/L。  相似文献   

8.
鲁米诺-铁氰化钾化学发光体系测定甲基多巴   总被引:1,自引:0,他引:1  
本文研究发现,铁氰化钾在碱性条件能氧化鲁米诺产生微弱的化学发光,而甲基多巴能大大增强该体系的发光强度.基于此,结合流动注射技术,建立起一种直接测定甲基多巴的流动注射化学发光新方法.该方法的检出限为5.7×10-10g/mL,甲基多巴浓度在1.0×10-9~1.0×10-7g/mL范围内与发光强度呈良好的线性关系.对1.0×10-9g/mL的甲基多巴平行测定11次,其相对标准偏差为2.3%.利用该方法对甲基多巴片剂含量的测定,结果令人满意.  相似文献   

9.
发现了可待因在铁氰化钾鲁米诺化学发光反应体系中的后化学发光反应。优化了反应条件,建立了一种利用后化学发光反应测定可待因的流动注射化学发光新方法。方法的检出限为3×10-8g mL,相对标准偏差为1.9%(1.0×10-6g mL可待因,n=11),线性范围为8.0×10-8~1.0×10-5g mL。此法已用于可待因片剂中可待因的测定,结果与药典方法测定值一致。  相似文献   

10.
提出了一种简单快速预富集水中痕量钼(Ⅵ)的新方法,方法的机理在于4-(2-吡啶偶氮)-间苯二酚(PAR)与钼(Ⅵ)螯合后被活性炭中附,然后用NaOH解吸下来,再用水杨基荧光酮与钼(Ⅵ)显色,分光光度法测定钼(Ⅵ)的含量;详细研究了影响Mo-PAR螯合物定量吸附于活性炭上的各种参数,找出了最佳吸附-解吸条件,包括吸附酸度、PAR用量、吸附时间、解吸酸度等;该法的主要优点是操作简单、快速,干扰小,避免了常规方法中用浓硝酸消化活性炭费时和污染大的解吸方法,该法已用于测定水中痕量钼(Ⅵ),加标回收率达到94%-97%。  相似文献   

11.
K3 [Fe(CN)6] and KFe[Fe(CN)6] are classical coordination compounds. However, the mechanism of decomposition reactions has not been well expounded. The gas products of thermal decomposition were examined by gas chroma tography (GC) , and the structure of the solid products by Mossbauer spectroscopy(MS) and X-ray diffraction(XRD). The findings are explained in terms of the theory of coordination chemistry and a decomposition mechanism is proposed in this study. On the basis of various experimental results, the first stage of the decomposition of K3[Fe(CN)6] in He was found to be the evolution of(CN)2 resulting in the reduction of Fe(Ⅲ)12K3 [Fe(CN)6]→9K4[Fe(CN)6] + Fe2 [Fe(CN)6] + 6 ( CN )For KFe [Fe(CN) 6 ], the first stage of decomposition man be represented as6KFe[Fe(CN)6]→3K2Fe[Fe(CN)6] + 2Fe2[Fe(CN)6 + 3(CN)2At higher temperatures, the decomposition of both K3[Fe(CN)6) andKFe[Fe(CN)6] to form KCN and Fe2C was accomplished by the release of(CN)2 and N2.  相似文献   

12.
将医用药物异丙肾上腺素引入分析化学作新显色剂,报道了异丙肾上腺素与[Fe(CN)6]3-进行显色反应的最佳条件、灵敏度、选择性和允许共存比.建立了微量的[Fe(CN)6]3-简便检定新方法,检出限为0.055μg,稀释限为14.5×106.  相似文献   

13.
提出掠射椭圆偏振测试技术的实验方案,应用该掠射式技术结合循环伏安法研究了在镀有In2O3玻璃片上进行的K4〔Fe(CN)6〕/K3〔Fe(CN)6〕电极反应.结果证明:掠射椭圆偏振术可在电化学反应过程中现场测定椭圆偏振参数及其变化规律,这些规律与所发生的表面电化学反应规律相对应,由此可以对电极体系进行研究;现场掠射椭圆偏振术还能用于分析表面扩散层的性质,弥补其它界面研究方法的缺陷.  相似文献   

14.
鲁米诺-过硫酸钠-卡托普利化学发光体系的研究   总被引:1,自引:0,他引:1  
基于卡托普利对过硫酸钠鲁米诺化学发光体系的强烈抑制作用,建立起一种直接测定卡托普利的流动注射化学发光新方法。该方法灵敏、简单、快速。线性范围为5.0×10-5~1.0×10-3g·L-1,检出限为1.7×10-5g·L-1,相对标准偏差为3.2%。利用该方法对卡托普利片剂含量的测定,结果满意。  相似文献   

15.
在pH 2~3的溶液中,低浓度Fe^2+与K3[Fe(CN)6]反应产生的蓝色沉淀为近似真溶液,最大吸收波长为710 nm.形成的近似真溶液吸光度随静置时间变化而逐渐变大,30 min后吸光度变化缓慢.K3[Fe(CN)6]过量时,Fe^2+浓度与吸光度呈很好的线性关系.Fe^2+浓度较大时,易形成絮状沉淀.在pH 2~3的Fe^3+-K3[Fe(CN)6]体系中,加入Vc能将Fe^3+还原成Fe^2+,进而与K3[Fe(CN)6]反应,30 min后测定蓝色拟真溶液的吸光度,Vc的量与溶液的吸光度同样有很好的线性关系,线性相关系数R〉0.999,检出限为0.94μg.  相似文献   

16.
采用聚二烯丙基二甲基氯化铵(PDDA)将铁氰化钾电子媒介体固定在电极表面,构建免标记的电化学免疫传感器. 醛基吡啶盐不仅作为基底物质直接固定抗体,还可以很好地增强电极表面的导电性能. 将构建的传感器用于肿瘤标志物甲胎蛋白的检测. 其线性范围为0.01-20 ng·mL-1,检测下限为0.004 ng·mL-1(3 S/N). 此传感器的构建简单方便、无标记、特异性好,为甲胎蛋白及其他肿瘤标志物提供了新的检测方法.  相似文献   

17.
采用K3[Fe(CN)6]作为锌镍电池的电解液添加剂,克服了锌阳极的变形。此外,通过一系列实验设计和表征,探索了电解液中金属锌与K3[Fe(CN)6]的反应机理。通过XRD (X-ray diffraction)和XPS (X-ray photo-electron spectroscopy)测试,我们发现金属锌在KOH水溶液中能够与K3[Fe(CN)6]反应,将[Fe(CN)6]3–还原为[Fe(CN)6]4−。添加K3[Fe(CN)6]的锌镍电池实现了更长的循环寿命,比不添加K3[Fe(CN)6]的锌镍电池长3倍以上。在相同循环次数下,改性电解质中锌阳极循环不仅形状变化较小,而且没有出现“死”锌现象,电极添加剂和粘结剂也没有发生偏析。此外,不同于一般的有机添加剂,K3[Fe(CN)6]的加入不仅不会增大电极的极化,还能够提高锌镍电池的放电容量和倍率性能。因此,考虑到这一改性策略有着较高的可行性和较低的成本,K3[Fe(CN)6]添加剂在锌镍电池的实际应用中具有极大的推广潜力。  相似文献   

18.
In view of the continuously worsening environmental problems, fossil fuels will not be able to support the development of human life in the future. Hence, it is of great importance to work on the efficient utilization of cleaner energy resources. In this case, cheap, reliable, and eco-friendly grid-scale energy storage systems can play a key role in optimizing our energy usage. When compared with lithium-ion and lead-acid batteries, the excellent safety, environmental benignity, and low toxicity of aqueous Zn-based batteries make them competitive in the context of large-scale energy storage. Among the various Zn-based batteries, due to a high open-circuit voltage and excellent rate performance, Zn-Ni batteries have great potential in practical applications. Nevertheless, the intrinsic obstacles associated with the use of Zn anodes in alkaline electrolytes, such as dendrite, shape change, passivation, and corrosion, limit their commercial application. Hence, we have focused our current efforts on inhibiting the corrosion and dissolution of Zn species. Based on a previous study from our research group, the failure of the Zn-Ni battery was caused by the shape change of the Zn anode, which stemmed from the dissolution of Zn and uneven current distribution on the anode. Therefore, for the current study, we selected K3[Fe(CN)6] as an electrolyte additive that would help minimize the corrosion and dissolution of the Zn anode. In the alkaline electrolyte, [Fe(CN)6]3– was reduced to [Fe(CN)6]4– by the metallic Zn present in the Zn-Ni battery. Owing to its low solubility in the electrolyte, K4[Fe(CN)6] adhered to the active Zn anode, thereby inhibiting the aggregation and corrosion of Zn. Ultimately, the shape change of the anode was effectively eliminated, which improved the cycling life of the Zn-Ni battery by more than three times (i.e., from 124 cycles to more than 423 cycles). As for capacity retention, the Zn-Ni battery with the pristine electrolyte only exhibited 40% capacity retention after 85 cycles, while the Zn-Ni battery with the modified electrolyte (i.e., containing K3[Fe(CN)6]) showed 72% capacity retention. Moreover, unlike conventional organic additives that increase electrode polarization, the addition of K3[Fe(CN)6] not only significantly reduced the charge-transfer resistance in a simplified three-electrode system, but also improved the discharge capacity and rate performance of the Zn-Ni battery. Importantly, considering that this strategy was easy to achieve and minimized additional costs, K3[Fe(CN)6], as an electrolyte additive with almost no negative effect, has tremendous potential in commercial Zn-Ni batteries.  相似文献   

19.
通过利用合成的环蕃类化合物1与单壁碳纳米管(SWNTs)间的π-π共轭相互作用,将化合物1固定在SWNTs的表面,制备了1-SWNT修饰电极.利用化合物1氧化态和还原态与铁氰化钾分子之间不同强度的主客体相互作用,实现了铁氰化钾分子在1-SWNT修饰电极表面的电化学可控吸附和解吸.循环伏安和XPS实验结果表明,在本研究采用的实验条件下,铁氰化钾分子在电极表面20s内即可达到吸附平衡;当电极在0.70V下极化1000s后,大多数吸附的铁氰化钾可从电极表面解吸.基于此,制备了铁氰化钾的可控存储和释放的电化学器件,该器件不但可以重复进行铁氰化钾分子的存储和释放,而且多次重复操作表现出较好的稳定性和重现性.本研究在发展具有特殊用途的电化学纳米器件,例如分子搬运器、电化学开关等研究中具有重要意义.  相似文献   

20.
IntroductionThehexacyanoferrateredoxcoupleisoneofthemostextensivelyinvestigatedoutersphereredoxreactions[1].ThestudiesofFe(CN...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号