首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mössbauer measurements on synthetic iron orthosilicate Fe2SiO4 (fayalite) were carried out in the antiferromagnetic spin state below T N 65 K. The Mössbauer parameters isomer shift , inner magnetic field H(0), angle between H(0) and the z-component of the electric field gradient (efg), quadrupole splitting QS and asymmetry parameter were determined as a function of temperature. These parameters could be attributed to the two crystallographic sites M1 and M2.The smaller isomer shift on M1 with respect to M2 displays the more covalent character of the Fe-O bond on M1, which is supported by previous neutron diffraction experiments. H(0) shows a Brillouin-type behaviour with different fields on the two crystallographic sites (stronger on M1) and a small discontinuity at T = 23 K which corresponds with previous magnetic measurements. The quadrupole splitting is equal on both sites within error bars, in agreement with previous theoretical results and in contradiction to previous Mössbauer refinements published elsewhere.  相似文献   

2.
The inner nebula out to ~3 A.U. was depleted in volatile elements that included potassium and manganese at a very early stage of solar-system history. The inner planets and many meteorites inherited this element signature, the cause of which probably was early violent solar activity. Because of this evidence for elemental depletions correlated with volatility, one might also expect to find examples of fractionation, particularly among lower mass elements. Here we discuss the search for such effects among the isotopes of K, Mg, Si, and Ca in a wide variety of terrestrial, lunar, and meteoritic samples. We examine examples of vaporization without isotope fractionation, and a comparison of the effects expected between distillation and condensation. Effects attributable both to evaporation and condensation are observed in refractory inclusions (CAIs) in meteorites and reflect localized events in the early nebula. However, the lack of isotopic fractionation that is observed among a wider variety of presolar-system materials rules out the general operation of Rayleigh-type fractionation on primitive solar-nebular material. We conclude with a discussion of volatileelement behavior during the giant Moon-forming impact that shows that the material in the Moon was not subjected to Rayleigh-type distillation.  相似文献   

3.
Single-crystal X-ray and neutron structure refinements carried out on neptunite (KNa2Li(Fe, Mg, Mn)2Ti2Si8O24) from San Benito, California at various temperatures (neutrons: 15 K and 293 K; X-rays: 110 K, 293 K and 493 K) indicate that this mineral crystallizes in the acentric space group Cc (T=293K: a=16.427 Å, b=12.478 Å, c=9.975 Å, = 115.56°, Z=4, V=1844.53 Å3) due to ordering of octahedrally coordinated metals (Ti, Fe, Mn, Mg). In the neptunite structure, Ti and (Fe, Mn, Mg) octahedra share edges to form chains that run along [110] and [110]. These chains are, in turn, linked through shared corners along [001]. The resulting octahedral framework is interwoven by a similar [Si8O22] tetrahedral framework. Li, Na and K occupy 6-, 8- and 10- coordinated sites within the framework. The metal-containing polyhedra show strong distortions at all temperatures. In particular, Ti exhibits a strong off-center displacement (0.25 Å) within its octahedron, leading to four Ti-O distances of 2.0 Å, one of 2.2 Å and one of 1.7 Å. The displaced Ti position is in good agreement with a position that minimizes differences between ionic bond strengths and is interpreted as an energy minimum in an ionic potential model. Mössbauer spectra collected at 77 K, 293 K and 400 K indicate all Fe to be present as octahedral Fe2+. Although two distinct Fe positions were found in the structure, 77 K and 293 K spectra display only one quadrupole doublet. Two Fe sites can only be resolved in the 400 K spectrum. It is suggested that the temperature dependence of octahedral edge distortions is responsible for the separation of the Mössbauer doublets.  相似文献   

4.
We report Mössbauer milliprobe measurements on small single-crystals of a magnesium-rich hedenbergite, approximate composition CaFe0.54Mg0.46 (SiO3)2, in which each of the electric-field gradient and mean-squared displacement tensors for Fe2+ in the M1 site of the crystal are precisely determined. Each tensor has in common, as required of crystal symmetry, the twofold axis of the monoclinic unit cell, but the principal directions of the two tensors in the perpendicular plane are non-coincident. The mean-squared displacements determined in the Mössbauer experiment exceed those determined from the X-ray vibration ellipsoids for Fe2+/M1 by a factor of 1.6; the anisotropy in the mean-squared displacement tensor from the Mössbauer measurements exceeds that from X-ray by a factor of around 5. The ramifications of these differences are discussed.  相似文献   

5.
6.
In this work a magnetic characterization was made of natural goethite from Burkina Faso, Africa, by using low temperature magnetization curves, hysteresis loops, Mössbauer spectroscopy at room temperature and 4.2 K, and AC susceptibility from 10 to 400 K. The samples are from two distinct geological sites that underwent different weathering processes. All measurements point to the occurrence of typical high coercivity goethite. Through Mössbauer spectroscopy sample BL44, from Gangaol, northeast Burkina Faso showed relaxation effects due to a wide distribution of grain size, including superparamagnetism threshold. AC susceptibility also supports this interpretation. The sample BL50 from Bonga in Burkina Faso is associated with lateritic Ni and in addition to goethite this sample also contained magnetite, as determined by Verwey transition in low temperature measurements as well as a small content of hematite identified by Mössbauer spectroscopy.  相似文献   

7.
The present work reports Mössbauer investigations for several temperatures below T N on fayalite single crystal sections cut perpendicularly to the crystallographic a and b-axis (Pnma). The previously detected correspondence between the c-component of the magnetic moment on M1 from neutron diffraction and our own Mössbauer measurements published elsewhere are confirmed for the other principal sections to a large extent. Small humps in the angular dependence of two components of the internal magnetic field H(0) on T below T=23 K are in good agreement with magnetometric and calorimetric data published elsewhere; a reinterpretation of single reflection neutron data has been possible by our results. Moreover, the axes of the electric field gradient (efg) are oriented within the crystallographic axes for the M1-site at low temperatures. The violation of symmetry on the M2 position as a result of our previous investigations could be confirmed for the section ⊥ a, but not with respect to b. A possible explanation in terms of saturation effects of large line intensities at the expense of the small ones is given in the context.  相似文献   

8.
A representative collection of structurally characterized eudialyte-group minerals (EGM) with varying relative concentrations of Fe2+ and Fe3+ ions from several localities was investigated at room temperature by 57Fe Mössbauer spectroscopy coupled with magnetometric, optical, and X-ray powder diffraction methods. To refine the Mössbauer parameters of isomer shift and quadrupole splitting for Fe2+ and Fe3+ in different types of coordination polyhedra (planar quadrangle, square pyramid, and distorted octahedron) in EGM structures, we also collected Mössbauer parameters for gillespite and labuntsovite. The main purpose of this work is to determine the location of Fe3+ in different sites in typical eudialyte, rastsvetaevite, georgbarsanovite, and some of their naturally hydrated and heat-treated analogs, and investigate the kinetics and oxidation mechanisms of iron ions in their structures. Our study has confirmed the presence of Fe2+ ions in the planar quadrangle and square pyramid in primary eudialytes, as well as the presence of Fe3+ ions in the square pyramid and distorted octahedron in primary, naturally hydrated, and heat-treated eudialytes. According to this study, hydrated eudialytes are characterized by the location of Fe3+ ions mainly in octahedra with OH groups and/or water molecules at trans vertices, while heat-treated eudialytes are characterized by their location in square pyramids with an O2? anion at the apical vertex.  相似文献   

9.
Natural sinhalites, MgAlBO4, from the Ratnapura District, Sri Lanka, and from Bodnar Quarry near Hamburg, Sussex Co., New Jersey, USA, have been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine the oxidation state and site occupancy of iron in the sinhalite structure. The samples contain about 3.35 and 1.46 wt% of total iron oxide, respectively. The structure refinement is successful and reproduces the total iron content provided that the substitution of Mg2+ by Fe2+ on the M2 position only is assumed. The 57Fe Mössbauer spectra at 77, 293, 573 and 773 K can be resolved into two doublets with hyperfine parameters common for octahedrally coordinated high-spin Fe2+. There is no evidence for iron in the tetrahedral site. Electronic structure calculations in local spin density approximation yield hyperfine parameters for Fe2+ on the M2-site at 0, 293, 573 and 773 K in quantitative agreement with experiments. Calculated spectroscopic properties for Fe2+ on the M1-site are at variance with the experimental data and, thus, indicate that substitution of Al3+ by Fe2+, if occurring at all, must be accompanied by considerable local expansion and distortion of the M1-octahedron.  相似文献   

10.
Sogdianite, a double-ring silicate of composition ( \textZr0. 7 6 \textTi0. 3 84 + \textFe0. 7 33 + \textAl0.13 )\Upsigma = 2 ( \square 1. 1 5 \textNa0. 8 5 )\Upsigma = 2 \textK[\textLi 3 \textSi 1 2 \textO 30 ] ( {\text{Zr}}_{0. 7 6} {\text{Ti}}_{0. 3 8}^{4 + } {\text{Fe}}_{0. 7 3}^{3 + } {\text{Al}}_{0.13} )_{\Upsigma = 2} \left( {\square_{ 1. 1 5} {\text{Na}}_{0. 8 5} } \right)_{\Upsigma = 2} {\text{K}}[{\text{Li}}_{ 3} {\text{Si}}_{ 1 2} {\text{O}}_{ 30} ] from Dara-i-Pioz, Tadjikistan, was studied by the combined application of 57Fe M?ssbauer spectroscopy and electronic structure calculations. The M?ssbauer spectrum confirms published microprobe and X-ray single-crystal diffraction results that indicate that Fe3+ is located at the octahedral A-site and that no Fe2+ is present. Both the measured and calculated quadrupole splitting, ΔE Q, for Fe3+ are virtually 0 mm s−1. Such a value is unusually small for a silicate and it is the same as the ΔE Q value for Fe3+ in structurally related sugilite. This result is traced back to the nearly regular octahedral coordination geometry corresponding to a very symmetric electric field gradient around Fe3+. A crystal chemical interpretation for the regular octahedral geometry and the resulting low ΔE Q value for Fe3+ in the M?ssbauer spectrum of sogdianite is that structural strain is largely “taken up” by weak Li–O bonds permitting highly distorted LiO4 tetrahedra. Weak Li–O bonding allows the edge-shared more strongly bonded Fe3+O6 octahedra to remain regular in geometry. This may be a typical property for all double-ring silicates with tetrahedrally coordinated Li.  相似文献   

11.
A series of amphiboles along the magnesioriebeckite—Na2Mg3Fe3+ 2Si8O22(OH)2– ferri-clinoholmquistite—Li2Mg3Fe3+ 2Si8O22(OH)2 - join, defined by the BLiB Na–1 exchange vector, were hydrothermally synthesized at 700°C, 0.4 GPa, NNO + 1 redox conditions. Powder XRD and SEM-EDAX showed a very high (> 90%) amphibole yield for all samples. X-ray patterns were indexed in the C2/m space group; refined cell-parameters show a linear decrease of a and as a function of chemistry. IR spectra in the OH-stretching region show four main and rather sharp bands; these are assigned to Mg and Fe2+ at M(1,3), and indicate that the obtained amphiboles depart from the nominal octahedral composition (M1,3Mg3). The IR spectra also show that there is an increasing filling-up of the A-site for increasing Na in the system (increasing solid-solution toward, arfvedsonite). Mössbauer spectra show four well-defined quadrupole doublets which are assigned to Fe3+ at M2 and to Fe2+ at M1, M3 and M4, respectively. The Fe3+/Fe2+ content derived from fitted peak areas show variable Fe3+ concentration along the series. Mössbauer spectra also show a distinct alteration of 57Fe hyperfine parameters with changing Na–Li at M4. The most evident variation is observed for the quadrupole splitting of Fe3+ at M2, which increases by 50% from ferri-clinoholmquistite to magnesio-riebeckite; this suggest that the M2 octahedron in ferri-clinoholmquistite is much closer to the ideal geometry than the M2 octahedron in magnesio-riebeckite. Mössbauer spectra show also a well-defined increase in the Fe2+ quadrupole splitting of the M1 and M3 octahedra, which is attributed to the Na–Li distribution at the B-sites.  相似文献   

12.
Data on the structural and valence distribution of Cr and Fe in chrysoberyl and in alexandrite, its gem variety, are given. It is shown that the Cr3+ line in the natural Ural and Tanzania samples is the strongest in the M1 site and for the synthetic stones, in the M2 site. During the annealing of the alexandrite crystals, Cr3+ passes from the smaller M1 site into the larger M2 site. The M?ssbauer spectroscopy quantitatively determined the distribution of different valence Fe ions. The various proportions of both Fe2+ and Fe3+ ions isomorphically entering the octahedral sites in the BeAl2O4 crystal structure were established.  相似文献   

13.
Mössbauer spectra were recorded at multiple temperatures between 80 and 293 K to study the nature of Fe3+ in Fe0.05Mg0.95SiO3 perovskite that had been synthesised in a multianvil press at 1650 °C and 25 GPa at its mimimum stability limit. The Mössbauer data were fitted to a model with quadrupole splitting distributions (Fe2+) and Lorentzian lineshapes (Fe3+ and Fen+). The centre shift data were fitted to a Debye model with the following results: ΘM (Fe2+)=365±52 K and ΘM (Fe3+)=476±96 K. Hyperfine parameter data for Fe3+ suggest occupation of the octahedral site only. The average valence seen by the Mössbauer effect in rapid electron exchange that occurs between Fe2+ and Fe3+ is calculated from the hyperfine parameters to be 2.50±0.07. Correction of area fractions for site-dependent recoil-free fractions gives a value for Fe3+/∑Fe of 9.4±1.4%, which is independent of temperature. A perovskite phase of similar composition synthesised in the multianvil press at higher oxygen fugacity gives a value for Fe3+/∑Fe of 16±3%, where Fe3+ appears to occupy both sites in the perovskite structure.  相似文献   

14.
The Mössbauer milliprobe allows the determination of Fe3+/ΣFe in samples as small as 50?μm. For the first time this technique is applied to a suite of diamonds of eclogitic paragenesis, where three garnet and five clinopyroxene inclusions in diamonds from George Creek, Colorado have been analysed. For garnet Fe3+/ΣFe ranges from 0–7%, while values for clinopyroxene range from 8–14%. These results are consistent with the low oxygen fugacity conditions implied by the presence of the inclusions in diamond.  相似文献   

15.
16.
The crystal chemistry of Fe ions in Cr-spinel from the largest Ural ultramafic massifs has been studied by Mössbauer spectroscopy at room temperature and the boiling temperature of liquid nitrogen. The spectra substantially depend on the mineral composition (stoichiometry) and measurement temperature; Fe2+ and Fe3+ doublets significantly overlap; the Fe2+ doublet lines are markedly broadened. According to the Mössbauer data, the degree of iron oxidation is 7–35% and appreciably differs from that in the stoichiometric approximation. The disturbance of integral stoichiometry by di- and trivalent cations (deviation of the Me3+/Me2+ value from 2.0) may be caused not only by partial inversion of the mineral structure but also by local micro- and nanoscale heterogeneity of the mineral, clustering of Fe2+ and Al (Cr, Fe3+) cations, and the appearance of associates. Possible application of the QS-distribution method for analyzing nonequivalent nuclear iron states and the thermal dynamics of Mössbauer spectra for studying local clustering effects of iron cations is discussed. It is shown that these approaches give new information on local heterogeneity of structural sites occupied by iron ions.  相似文献   

17.
Mineralogical analysis, electrical conductivity and thermopower are reported for monocrystalline heterosite (Fe3+, Mn3+)PO4 with the orthorhombic olivine-type structure. The 57Fe Mössbauer spectrum could be adequately described using two Fe3+ doublets. By impedance spectroscopy (20 Hz–1 MHz) the electrical DC conductivity σDC and AC conductivity σAC were determined parallel (∥) and perpendicular to the [001] direction (space group Pnma) in the range ~160–440 K. The graph log σDC?1/T shows a slightly bent curve in both directions with activation energies of E A ~0.30 and ~0.15 eV in the high and low temperature ranges, respectively. The reduced E A is associated with electronic conduction; σDC ∥ [001] follows Mott’s T 1/4 variable range hopping law at lower temperatures with hopping between localized levels. The values of σAC are increased relative to σDC at high frequencies and low temperatures, obeying Jonscher’s universal dynamic response law; for σAC ∥ [001], the variation with temperature of the frequency exponent is in fair agreement with the model of small polaron hopping. The absolute thermopower Θ is negative and low between ~295 and ~440 K, Θ does hardly vary with temperatures in both directions; the temperature independency of Θ ∥ [001] is consistent with the small polaron hopping model.  相似文献   

18.
The crystal chemistry of a ferroaxinite from Colebrook Hill, Rosebery district, Tasmania, Australia, was investigated by electron microprobe analysis in wavelength-dispersive mode, inductively coupled plasma–atomic emission spectroscopy (ICP–AES), 57Fe Mössbauer spectroscopy and single-crystal neutron diffraction at 293 K. The chemical formula obtained on the basis of the ICP–AES data is the following: \( ^{X1,X2} {\text{Ca}}_{4.03} \,^{Y} \left( {{\text{Mn}}_{0.42} {\text{Mg}}_{0.23} {\text{Fe}}^{2 + }_{1.39} } \right)_{\varSigma 2.04} \,^{Z1,Z2} \left( {{\text{Fe}}^{3 + }_{0.15} {\text{Al}}_{3.55} {\text{Ti}}_{0.12} } \right)_{\varSigma 3.82} \,^{T1,T2,T3,T4} \left( {{\text{Ti}}_{0.03} {\text{Si}}_{7.97} } \right)_{\varSigma 8} \,^{T5} {\text{B}}_{1.96} {\text{O}}_{30} \left( {\text{OH}} \right)_{2.18} \). The 57Fe Mössbauer spectrum shows unambiguously the occurrence of Fe2+ and Fe3+ in octahedral coordination only, with Fe2+/Fe3+ = 9:1. The neutron structure refinement provides a structure model in general agreement with the previous experimental findings: the tetrahedral T1, T2, T3 and T4 sites are fully occupied by Si, whereas the T5 site is fully occupied by B, with no evidence of Si at the T5, or Al or Fe3+ at the T1T5 sites. The structural and chemical data of this study suggest that the amount of B in ferroaxinite is that expected from the ideal stoichiometry: 2 a.p.f.u. (for 32 O). The atomic distribution among the X1, X2, Y, Z1 and Z2 sites obtained by neutron structure refinement is in good agreement with that based on the ICP–AES data. For the first time, an unambiguous localization of the H site is obtained, which forms a hydroxyl group with the oxygen atom at the O16 site as donor. The H-bonding scheme in axinite structure is now fully described: the O16H distance (corrected for riding motion effect) is 0.991(1) Å and an asymmetric bifurcated bonding configuration occurs, with O5 and O13 as acceptors [i.e. with O16···O5 = 3.096(1) Å, H···O5 = 2.450(1) Å and O16H···O5 = 123.9(1)°; O16···O13 = 2.777(1) Å, H···O13 = 1.914(1) Å and O16H···O13 = 146.9(1)°].  相似文献   

19.
The thermal characteristics of magnetic susceptibilities and their anisotropies of single crystal of ilvaite, a mixed valence iron sorosilicate, have been analysed in the light of Ligand Field (LF) theory using a minimum number of approximations. The electronic energy pattern and the corresponding wavefunctions were obtained from best fitting of these experimental results with the corresponding theoretical values. These results were next used to calculate the thermal characteristic of the quadrupole splitting E Q in ilvaite. It was found that the values of E Q are reasonably close to those reported from Mössbauer studies. The present analysis suggest appreciable molecular overlap between the orbits of the ligand electrons and those of the Fe2+ atoms, the overlap being prominent along the chain direction as also observed from electrical conductivity measurements.  相似文献   

20.
Voltaite is a mineral of fumaroles, solfatares, coal-fire gas vents, and acid-mine drainage systems. The nominal composition is K2Fe5 2+Fe3 3+Al(SO4)12·18H2O and the nominal symmetry is cubic, $Fd\overline{3}c$ . The tetragonal (I41/acd) superstructure of voltaite is known as the mineral pertlikite. In this study, we investigated 22 synthetic voltaite samples in which Fe2+ was partially or completely replaced by Mg, Zn, Mn, or Cd, by single-crystal and powder X-ray diffraction (both in-house and synchrotron). Two samples contained NH4 + instead of K+. The structure of voltaite is based on a framework defined by kröhnkite-like heteropolyhedral chains which host both M3+ and M2+ in octahedral coordination. Unit cell dimensions of the end-members scale almost linearly with the size of M2+. In the Fe2+-Mg-Zn solid solutions, the Fe2+-Mg and Fe2+-Zn solutions are linear (ideal) in terms of their lattice-parameter variations. The Mg-Zn solid solution, however, is strongly non-ideal. A detailed analysis of the topology of the chains showed that this behavior originates in expansion and contraction of individual M2+-O bonds within the chains. In the Mg-Zn solid solution, some of the M2+-O bonds expand while none contract. In the other solid solutions, expansion of some M2+-O bonds is always compensated by contraction of the other ones. Parts of the nominally cubic crystals are optically anisotropic and their symmetry is found to be tetragonal by single crystal X-ray diffraction measurements. The coexistence of cubic and tetragonal sectors within a single crystal without any detectable difference in their chemical composition is difficult to explain in terms of growth of such composite crystals. Mössbauer and infrared spectra collected on our synthetic crystals conform with previously published data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号