首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In recent years, the identification of the essential nodes in complex networks has attracted significant attention because of their theoretical and practical significance in many applications, such as preventing and controlling epidemic diseases and discovering essential proteins. Several importance measures have been proposed from diverse perspectives to identify crucial nodes more accurately. In this paper, we propose a novel importance metric called node propagation entropy, which uses a combination of the clustering coefficients of nodes and the influence of the first- and second-order neighbor numbers on node importance to identify essential nodes from an entropy perspective while considering the local and global information of the network. Furthermore, the susceptible–infected–removed and susceptible–infected–removed–susceptible epidemic models along with the Kendall coefficient are used to reveal the relevant correlations among the various importance measures. The results of experiments conducted on several real networks from different domains show that the proposed metric is more accurate and stable in identifying significant nodes than many existing techniques, including degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and H-index.  相似文献   

3.
Using a tunable clustering coefficient model without changing the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For several typical categories of complex networks, the more triangles are in the networks, the worse the synchronizability of the networks is.  相似文献   

4.
Functional modules can be predicted using genome-wide protein–protein interactions (PPIs) from a systematic perspective. Various graph clustering algorithms have been applied to PPI networks for this task. In particular, the detection of overlapping clusters is necessary because a protein is involved in multiple functions under different conditions. graph entropy (GE) is a novel metric to assess the quality of clusters in a large, complex network. In this study, the unweighted and weighted GE algorithm is evaluated to prove the validity of predicting function modules. To measure clustering accuracy, the clustering results are compared to protein complexes and Gene Ontology (GO) annotations as references. We demonstrate that the GE algorithm is more accurate in overlapping clusters than the other competitive methods. Moreover, we confirm the biological feasibility of the proteins that occur most frequently in the set of identified clusters. Finally, novel proteins for the additional annotation of GO terms are revealed.  相似文献   

5.
Identifying influential nodes in complex networks has attracted the attention of many researchers in recent years. However, due to the high time complexity, methods based on global attributes have become unsuitable for large-scale complex networks. In addition, compared with methods considering only a single attribute, considering multiple attributes can enhance the performance of the method used. Therefore, this paper proposes a new multiple local attributes-weighted centrality (LWC) based on information entropy, combining degree and clustering coefficient; both one-step and two-step neighborhood information are considered for evaluating the influence of nodes and identifying influential nodes in complex networks. Firstly, the influence of a node in a complex network is divided into direct influence and indirect influence. The degree and clustering coefficient are selected as direct influence measures. Secondly, based on the two direct influence measures, we define two indirect influence measures: two-hop degree and two-hop clustering coefficient. Then, the information entropy is used to weight the above four influence measures, and the LWC of each node is obtained by calculating the weighted sum of these measures. Finally, all the nodes are ranked based on the value of the LWC, and the influential nodes can be identified. The proposed LWC method is applied to identify influential nodes in four real-world networks and is compared with five well-known methods. The experimental results demonstrate the good performance of the proposed method on discrimination capability and accuracy.  相似文献   

6.
While the majority of approaches to the characterization of complex networks has relied on measurements considering only the immediate neighborhood of each network node, valuable information about the network topological properties can be obtained by considering further neighborhoods. The current work considers the concept of virtual hierarchies established around each node and the respectively defined hierarchical node degree and clustering coefficient (introduced in cond-mat/0408076), complemented by new hierarchical measurements, in order to obtain a powerful set of topological features of complex networks. The interpretation of such measurements is discussed, including an analytical study of the hierarchical node degree for random networks, and the potential of the suggested measurements for the characterization of complex networks is illustrated with respect to simulations of random, scale-free and regular network models as well as real data (airports, proteins and word associations). The enhanced characterization of the connectivity provided by the set of hierarchical measurements also allows the use of agglomerative clustering methods in order to obtain taxonomies of relationships between nodes in a network, a possibility which is also illustrated in the current article.  相似文献   

7.
In the present paper, synchronization and bifurcation of general complex dynamical networks are investigated. We mainly focus on networks with a somewhat general coupling matrix, i.e., the sum of each row equals a nonzero constant u. We derive a result that the networks can reach a new synchronous state, which is not the asymptotic limit set determined by the node equation. At the synchronous state, the networks appear bifurcation if we regard the constant u as a bifurcation parameter. Numerical examples are given to illustrate our derived conclusions.  相似文献   

8.
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.  相似文献   

9.
In complex networks, network modules play a center role, which carry out a key function. In this paper, we introduce the spatial correIation function to describe the relationships among the network modules. Our focus is to investigate how the network modules evolve, and what the evolution properties of the modules are. In order to test the proposed method, as the examples, we use our method to analyze and discuss the ER random network and scale-free network. Rigorous analysis of the existing data shows that the introduced correlation function is suitable for describing the evolution properties of network modules. Remarkably, the numerical simulations indicate that the ER random network and scale-free network have different evolution properties.  相似文献   

10.
In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics ofthis new network are given.  相似文献   

11.
In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.  相似文献   

12.
One of the main problems in graph analysis is the correct identification of relevant nodes for spreading processes. Spreaders are crucial for accelerating/hindering information diffusion, increasing product exposure, controlling diseases, rumors, and more. Correct identification of spreaders in graph analysis is a relevant task to optimally use the network structure and ensure a more efficient flow of information. Additionally, network topology has proven to play a relevant role in the spreading processes. In this sense, more of the existing methods based on local, global, or hybrid centrality measures only select relevant nodes based on their ranking values, but they do not intentionally focus on their distribution on the graph. In this paper, we propose a simple yet effective method that takes advantage of the underlying graph topology to guarantee that the selected nodes are not only relevant but also well-scattered. Our proposal also suggests how to define the number of spreaders to select. The approach is composed of two phases: first, graph partitioning; and second, identification and distribution of relevant nodes. We have tested our approach by applying the SIR spreading model over nine real complex networks. The experimental results showed more influential and scattered values for the set of relevant nodes identified by our approach than several reference algorithms, including degree, closeness, Betweenness, VoteRank, HybridRank, and IKS. The results further showed an improvement in the propagation influence value when combining our distribution strategy with classical metrics, such as degree, outperforming computationally more complex strategies. Moreover, our proposal shows a good computational complexity and can be applied to large-scale networks.  相似文献   

13.
For most networks, the weight of connection is changing with their attachment and inner affinity. By introducing a mixed mechanism of weighted-driven and inner selection, the model exhibits wide range power-law distributions of node strength and edge weight, and the exponent can be adjusted by not only the parameter δ but also the probability q. Furthermore, we investigate the weighted average shortest distance, clustering coefficient, and the correlation of our network. In addition, the weighted assortativity coefficient which characterizes important information of weighted topological networks has been discussed, but the variation of coefficients is much smaller than the former researches.  相似文献   

14.
Fixed-time synchronization problem for delayed dynamical complex networks is explored in this paper. Compared with some correspondingly existed results, a few new results are obtained to guarantee fixed-time synchronization of delayed dynamical networks model. Moreover, by designing adaptive controller and discontinuous feedback controller, fixed-time synchronization can be realized through regulating the main control parameter. Additionally, a new theorem for fixed-time synchronization is used to reduce the conservatism of the existing work in terms of conditions and the estimate of synchronization time. In particular, we obtain some fixed-time synchronization criteria for a type of coupled delayed neural networks. Finally, the analysis and comparison of the proposed controllers are given to demonstrate the validness of the derived results from one numerical example.  相似文献   

15.
Consensus about the universality of the power law feature in complex networks is experiencing widespread challenges. In this paper, we propose a generic theoretical framework in order to examine the power law property. First, we study a class of birth-and-death networks that are more common than BA networks in the real world, and then we calculate their degree distributions; the results show that the tails of their degree distributions exhibit a distinct power law feature. Second, we suggest that in the real world two important factors—network size and node disappearance probability—will affect the analysis of power law characteristics in observation networks. Finally, we suggest that an effective way of detecting the power law property is to observe the asymptotic (limiting) behavior of the degree distribution within its effective intervals.  相似文献   

16.
安海岗 《计算物理》2014,31(6):742-750
选择伦敦金与Au9999下午收盘价格作为样本数据研究时间序列双变量之间的联动波动规律.依据粗粒化方法,将伦敦金与Au9999价格的联动波动状态转化为由5个{P,N,M}字符组成的字符串,每个字符串代表5天的价格联动波动模态.将模态作为节点,模态之间的转化为边,构建价格联动波动复杂网络.运用复杂网络理论对时间序列双变量联动波动模态的统计、变化规律和演化机制进行分析.结果表明:时间序列双变量联动波动模态分布具有幂律性、群簇性和周期性,其联动波动模态主要通过少数几种模态进行转换与演化.本方法不仅可以研究不同类型时间序列双变量联动波动,同时可为多变量联动波动研究提供思路.  相似文献   

17.
We analyze the correlation properties of the Erdos-Rényi random graph (RG) and the Barabási-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maximum degree k representing the local property of the system, shows similar scaling behaviors for random graphs and scale-free networks. The fluctuations are quite random at short time scales but display strong anticorrelation at longer time scales under the same system size N and different repair probability pre. The average degree , revealing the statistical property of the system, exhibits completely different scaling behaviors for random graphs and scale-free networks. Random graphs display long-range power-law correlations. Scale-free networks are uncorrelated at short time scales; while anticorrelated at longer time scales and the anticorrelation becoming stronger with the increase of pre.  相似文献   

18.
We analyze structure and dynamics of flight networks of 50 airlines active in the European airspace in 2017. Our analysis shows that the concentration of the degree of nodes of different flight networks of airlines is markedly heterogeneous among airlines reflecting heterogeneity of the airline business models. We obtain an unsupervised classification of airlines by performing a hierarchical clustering that uses a correlation coefficient computed between the average occurrence profiles of 4-motifs of airline networks as similarity measure. The hierarchical tree is highly informative with respect to properties of the different airlines (for example, the number of main hubs, airline participation to intercontinental flights, regional coverage, nature of commercial, cargo, leisure or rental airline). The 4-motif patterns are therefore distinctive of each airline and reflect information about the main determinants of different airlines. This information is different from what can be found looking at the overlap of directed links.  相似文献   

19.
We introduce a continuous weight attack strategy and numerically investigate the effect of continuous weight attack strategy on the Barabasi-Albert (BA) scale-free network and the Erdos-Rdnyi (ER) random network. We use a weight coefficient ω to define the attack intensity. The weight coefficient ω increases continuously from 1 to infinity, where 1 represents no attack and infinity represents complete destructive attack. Our results show that the continuous weight attack on two selected nodes with small ω (ω≈ 3) could achieve the same damage of complete elimination of a single selected node on both BA and ER networks. It is found that the continuous weight attack on a single selected edge with small ω (ω≈ 2) can reach the same effect of complete elimination of a single edge on BA network, but on ER network the damage of the continuous weight attack on a single edge is c/ose to but always smaller than that of complete elimination of edge even if ω is very large.  相似文献   

20.
Various mathematical frameworks play an essential role in understanding the economic systems and the emergence of crises in them. Understanding the relation between the structure of connections between the system’s constituents and the emergence of a crisis is of great importance. In this paper, we propose a novel method for the inference of economic systems’ structures based on complex networks theory utilizing the time series of prices. Our network is obtained from the correlation matrix between the time series of companies’ prices by imposing a threshold on the values of the correlation coefficients. The optimal value of the threshold is determined by comparing the spectral properties of the threshold network and the correlation matrix. We analyze the community structure of the obtained networks and the relation between communities’ inter and intra-connectivity as indicators of systemic risk. Our results show how an economic system’s behavior is related to its structure and how the crisis is reflected in changes in the structure. We show how regulation and deregulation affect the structure of the system. We demonstrate that our method can identify high systemic risks and measure the impact of the actions taken to increase the system’s stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号