首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
利用1982年~2002年Pathfinder NDVI遥感数据,采用REOF和倾向度趋势分析方法,研究了5~6月青藏高原地表植被的区域变化特征及时间变化趋势。21a来高原区域植被总体呈增加趋势,但这种变化趋势有着明显的时间和空间差异。表现为5~6月空间上存在一个位于高原南北的两条呈带状分布的植被显著变化区域。该区域内植被对前期气温变化响应迅速,生物量随气温升高呈现出显著的一致增加趋势,增长速率大都超过10%/10a,与前期4~5月全球平均气温相关系数达到0.71,是全球变暖响应的敏感区。进一步的分析表明这种对全球变暖响应的区域差异主要来自于植被分布的不同,植被变化显著的区域基本上处于高山山脉或半荒漠地区NDVI值低于0.12的本底植被覆盖较低的区域。从植被覆盖类型看,草地植被生物量随全球变暖增幅明显,21a约增加10%,对全球变暖响应明显,而中高覆盖区植被和其他类型植被随气温升高的增幅较小,对全球变暖响应较弱。  相似文献   

2.
《巴黎协定》提出全球暖化程度在21世纪末相对工业革命前控制在2℃以内的目标。青藏高原高寒植被对全球变暖非常敏感,在2℃温升这个边界增温条件下研究高原植被对气候变化的响应关系到高原生态安全问题,有重大现实意义。本文基于CMIP5多模式模拟预测结果研究了高原植被对2℃温升的响应,并探讨了高原植被对于气候因子变化的敏感性,得到主要结论如下:在全球2℃温升背景下,高原植被叶面积指数(Leaf Area Index, LAI)较历史参考期显著增加,高原变绿,其中高原中部LAI和植被碳存储增加最为显著,三江源是植被LAI增加较快的区域。增温后裸地面积迅速减少,植被覆盖率总体增加,大部分地区草地呈增加趋势,森林减少趋势变缓,说明在2℃温升期高原植被有所改善。在全球2℃温升背景下,高原植被覆盖率表现出对温度和降水率等气候因子更强的依赖性和敏感性,在增暖环境中,气温仍是影响高原植被生态系统变化的主控因子。  相似文献   

3.
大兴安岭植被NDVI变化及其对气候的响应   总被引:3,自引:0,他引:3  
利用S-G(Savitsky-Golay)滤波对2000—2016年呼伦贝尔市境内的大兴安岭植被NDVI序列进行逐栅格重构并剔除突变点,结合大兴安岭海拔、坡向、坡度等地理因子和气温、降水等气象因子,分析大兴安岭植被生长季NDVI的变化及其对气候的响应。结果表明:大兴安岭植被NDVI生长季均值呈上升趋势,平均增速为0. 029/10 a。植被NDVI随海拔的增加呈现先缓慢减小后迅速增加的趋势,随坡向变化不大,随坡度的增加而增加。植被NDVI的生长季均值与1 a前和2 a年前的降水呈现显著的正相关,具有明显的滞后性。在每年植被恢复生长初期各海拔植被均与气温呈现极显著的正相关,年内植被NDVI与降水的相关性在垂直方向上存在较大差异。  相似文献   

4.
利用1971-2016年青藏高原81个气象站逐月积雪日数和45个测站第一冻结层下界观测资料,分析了青藏高原积雪冻土的时空变化特征及其与高原植被指数(NDVI)的关系,探讨了积雪冻土下垫面变化对高原植被及沙漠化的可能影响。结果表明:1)青藏高原积雪日数分布极不均匀,巴颜喀拉山和唐古拉山为高原积雪日数的大值区,且年际变率较大。2)青藏高原积雪日数总体上呈现减少趋势,平均以3.5 d/(10 a)的速率减少,且在1998年前后发生突变,减少速率进一步加快,达到5.1 d/(10 a)。3)青藏高原第一冻结层下界呈上升趋势,达到-3.7 cm/(10 a),与青藏高原增暖紧密相关。4)青藏高原NDVI呈缓慢增加趋势,与高原气温、降水的增加趋势相一致,积雪冻土的变化对不同区域植被NDVI的影响有显著差异。在气候变暖背景下,形成的暖湿环境促进积雪消融、冻土下界提升,使土壤浅层含水量增加,有利于植被恢复和生长,其结果对高原土地沙漠化防治有一定参考作用。  相似文献   

5.
基于一套格点化的中国区域逐日观测资料(CN05.1)及归一化植被指数(NDVI)空间分布数据集,采用一元线性拟合、Mann-Kendall突变检验、Theil-Sen Median方法以及偏相关分析,研究了内蒙古西部沙区50年气温降水时空变化特征及其21年植被响应。结果表明:1969-2018年内蒙古西部沙区气温以0.447℃?(10a)-1的倾向率显著增加,发生一次显著突变。降水以4.533mm?(10a)-1的倾向率增加,发生3次突变。巴彦淖尔和鄂尔多斯东南部气温降水变化突出,空间异质性明显;1998-2018年内蒙古西部沙区NDVI整体以0.01?(10a)-1的速率显著增加,巴彦淖尔南部、鄂尔多斯以及阿拉善东南部增加最为显著;1998-2018年生长季NDVI与降水气温均呈正相关,降水对其影响大于气温,内蒙古西部沙区整体上呈暖湿趋势,且植被向好发展。  相似文献   

6.
青藏高原气候独特,影响高原夏季降水的原因是十分复杂的和多方面的。文中利用1982—2001年的卫星遥感植被归一化指数(NDVI)资料和青藏高原55个实测台站降水资料,应用经验正交分解(EOF)、奇异值分解(SVD)等方法分析了青藏高原冬、春植被变化特征及其与高原夏季降水的联系,得到以下几点初步认识:青藏高原冬、春季植被分布基本呈现东南地区植被覆盖较好,逐渐向西北地区减少的特征。其中高原东南部地区和高原南侧边界地区NDVI值最大,而西北地区和北侧边界地区NDVI较小。EOF分析表明,20年来冬、春季高原植被的变化趋势是总体呈阶段性增加,其中尤以高原北部、西北部(昆仑山、阿尔金山和祁连山沿线)和南部的雅鲁藏布江流域植被增加明显。由SVD方法得到的高原前期NDVI与后期降水的相关性是较稳定的。青藏高原多数区域冬、春植被与夏季降水存在较好的正相关,且这种滞后相关存在明显的区域差异。高原南部和北部区域的NDVI在冬春两季都与夏季降水有明显的正相关,即冬春季植被对夏季降水的影响较显著。而冬季高原中东部玉树地区附近区域的NDVI与夏季降水也存在较明显的负相关,即冬季中东部区域的植被变化对夏季降水的影响也较显著。由此可见,高原前期NDVI的变化特征,可以作为高原降水长期预报综合考虑的一个重要参考因子。  相似文献   

7.
利用1982-2006年GIMMS NDVI数据,以多种统计方法为基础,探讨了青藏高原(下称高原)不同时间尺度(年际、季节及月)植被变化的时空特征及其与气候因子的关系。结果表明:高原整体年平均NDVI变化呈波动上升趋势,其中夏季趋势最大,达0.004(10a)-1。不同覆盖度像元变化对总体植被变化的贡献不同,低植被覆盖像元变化对各季节总体植被变化贡献均较大,其中冬季最大;中等植被覆盖像元变化的贡献主要在秋季;高植被覆盖像元的贡献则夏季最明显。青藏高原植被变化存在显著的空间差异,其中夏季呈增加和减少趋势的面积均最大,分别达30.51%、10.52%,增加的区域主要位于高原东部,减少的区域主要在高原中部的藏北高原。进一步分析高原植被和气候因子的相关性表明,中等植被覆盖区植被与气候因子的相关性最高,其次是高植被覆盖区,低植被覆盖区的相关性则最低。在年际和季节尺度上,植被生长主要与温度和降水的累积效应有关,其中在植被生长较好的季节和区域更明显。而在月尺度上,中低植被覆盖区植被生长受短期降水事件影响较大,高植被覆盖区则仍是温度的累积效应占主导。  相似文献   

8.
基于遥感数据监测若尔盖高原植被覆盖度变化   总被引:1,自引:0,他引:1  
基于1982-2006年的AVHRR NDVI和2000-2013年的MODIS NDVI数据,通过数据一致性拟合建立了若尔盖高原的1982-2 013年NDVI长时间序列数据集,在此基础上运用像元二分模型计算得到若尔盖高原32年的逐月植被覆盖度。验证结果表明,平均绝对误差为10.51%,均方根误差为13.49%,R~2为0.62,具有较好的精度,说明遥感估算值合理可信。根据遥感计算得到的植被覆盖度,分析了若尔盖高原1982-2013年植被覆盖度的时空变化规律。若尔盖高原32年平均植被覆盖度为43.77%,在空间上表现出东部高、西部低的分布特征。1982-2013年期间若尔盖高原植被覆盖度整体上呈现上升趋势,平均变化速率为0.08%·a~(-1),其中1982-2001年植被覆盖度呈较大幅度波动,但是没有明显的上升或者下降趋势,2001-2013年则呈现较明显的上升趋势。32年期间植被覆盖度年变化率的空间差异性显著,中心区域整体上呈现较低的上升趋势,而在大部分地区植被覆盖度显著上升和显著下降的区域交错分布。  相似文献   

9.
基于MODIS-NDVI数据及像元二分模型,对辽宁省植被覆盖度进行估算,并在此基础上探讨了辽宁植被覆盖度时空演变特征及其对气候因子的响应,结果表明:2000-2018年辽宁省植被覆盖度整体呈波动增加趋势,年平均增长速率为0.38%,呈增加趋势的面积占总面积的92.3%;2000年以来,裸地及低覆盖区域占比逐年减小,中低覆盖、中覆盖及高覆盖区域占比分别增加11.35%、11.00%和9.22%;辽宁省植被覆盖度与气候因子的关系表现出明显的空间差异性,其中,西部易旱地区覆盖度与气温呈显著负相关,与降水呈正相关,东部地区覆盖度与气温呈正相关,与降水呈负相关;辽宁植被覆盖度对降水的响应存在一个月的滞后期,对气温的响应无滞后效应。  相似文献   

10.
利用2000—2017年广西典型喀斯特区MODIS NDVI卫星遥感影像,研究近20 a来喀斯特地区植被及不同等级石漠化区植被时空变化状况,分析降水及气温与喀斯特地区植被变化的相关性,探讨植被变化与气象因子的关系。结果表明:(1)研究区植被及各石漠化等级区植被年内NDVI变化特征均表现出"夏秋高,冬春低"的趋势,随着石漠化等级加重,植被NDVI均值降低。植被NDVI峰值多出现在8月上旬至9月上旬,谷值出现在1月和2月上旬。但以灌草为主的轻、中、重石漠化区植被NDVI峰值出现时间较早,以乔木为主的潜在石漠化区植被NDVI峰值出现时间较迟。(2)2000—2017年百色全喀斯特地区及各等级石漠化区植被NDVI均呈改善趋势,且重度石漠化区植被改善趋势最明显,轻度石漠化区次之。研究区植被多为稳定变化和改善趋势,改善、变化不大和退化面积比例分别为38.27%、57.86%、4.87%。(3)平均气温和降水量与研究区植被NDVI相关性均较高,且平均气温与植被NDVI的相关性总体好于降水量。年尺度气温和降水量对植被NDVI影响均较明显,季度尺度上,秋季和春季气温降水对植被NDVI影响较大,冬季影响最小。目前气候变暖引起的增温幅度有利于研究区植被生长,春夏季降水减少、秋季降水增多的气候变化趋势更利于研究区植被改善。  相似文献   

11.
20世纪两次全球增暖事件的比较   总被引:12,自引:1,他引:11  
20世纪20年代和70年代全球出现了两次突变增暖,本文分析比较了这两次全球增暖的起源地,空间分布特点,影响范围,以及北半球增温和降温最大地区的气温变化与其相对应的大气环流变化的联系等.发现,第一次全球增暖始于北半球新地岛西北、冰岛及以北的极地地区,主要增暖区在北大西洋、格陵兰岛、冰岛和北半球中、高纬大陆地区,主要增暖季节是夏季.第二次全球增暖最早可能始于南半球南印度洋海盆及南极大陆地区,增暖中心有明显向北半球方向移动的倾向并广泛影响到全球热带、副热带海洋,没有明显的区域和季节增暖差异;北半球第二次增暖比南半球约晚10年,主要增温区在东亚大陆和北美西部,主要增暖季节在冬季.分析还发现,20世纪北半球增暖最强的东亚大陆、北美西北部和降温显著的冰岛、格陵兰岛、北大西洋以及中北太平洋等地的气温变化与其相应的大气环流系统的异常变化关系密切.  相似文献   

12.
利用1999-2008年新疆地面气象站的雷暴观测资料,从雷暴日的年、季、月、日等方面分析新疆境内雷暴活动的时空分布特征,并针对南、北疆的气候差异对比分析了雷暴活动特征的异同。结果表明:1999-2008年新疆年雷暴日数存在小幅波动,雷暴主要发生在每年的4-10月,每天的17-20时。雷暴活动存在一个沿天山南脉轴向为东北-西南向的带状高发区;南疆雷暴日数的年变化波动较北疆明显;夏、秋季南疆的雷暴日数多于北疆,尤其是秋季。  相似文献   

13.
基于ECMWF再分析数据的大气波导分布规律研究   总被引:2,自引:0,他引:2  
王华  马贲  焦林  唐海川 《气象学报》2021,79(3):521-530
大气波导对电磁波传播有显著的影响,大气波导特征参量分布研究对于分析电磁波传播乃至雷达、通信等电子设备效能具有重要意义,利用ERA-Interim数据计算大气波导特征参量,并用海洋调查期间的低空探空火箭数据计算的大气波导进行了验证,在此基础上用2011—2016年ERA-Interim温度、湿度分层数据统计分析了全球大气...  相似文献   

14.
一次冬季江淮气旋逗点云区的雷达回波和气流结构分析   总被引:2,自引:0,他引:2  
赵宇  蓝欣  杨成芳 《气象学报》2018,76(5):726-741
2016年2月12—13日,受冷空气和江淮气旋暖锋锋生影响,山东出现一次极端暴雨雪天气过程,全省有42个站的降水突破同期历史记录。采用多种观测以及WRF模式模拟的热力学变量,基于拉格朗日方法的气流轨迹模式(HYSPLIT v4.9),分析了气旋逗点云区云系的演变特征、降水不同阶段气旋逗点云区气流结构和轨迹特征。结果表明:(1)江淮气旋逗点云区由4条带状回波合并发展形成,气旋形成后降水回波呈气旋式旋转、拉长,形成多条中尺度强降水带。(2)降雨阶段气旋逗点头从下到上主要由来自东海、黄海、日本海或内陆的边界层气团,来自中国南海和中南半岛的暖湿气团以及来自西亚和东欧的干冷气团组成。气旋逗点头内有3个降水区:北部和南部暖湿气团浅薄、层结稳定,为层状云降水区;中部暖湿气团深厚,中高层有条件性不稳定发展,为深厚的对流云降水区。气旋逗点头中南部的干冷空气来自高层的西亚气团,而剖面北部有来自中层(即青藏高原东部气团)的干冷空气,气团明显变性,对降水贡献大。(3)降雪阶段气旋逗点头从下到上主要由西伯利亚气团、东海气团、南海气团和孟加拉湾气团叠置而成。气旋逗点头西部层状降水区分两部分:北部为降雪区,南部为降雨区。降雪与降雨阶段的明显差别是冷湿的东海气团下面是否有西伯利亚冷气团。降雪区西伯利亚气团上空东海气团深厚,南海气团浅薄;降雨区南海气团深厚,东海气团浅薄。   相似文献   

15.
一次大范围海效应暴雪的雷达反演风场分析   总被引:1,自引:0,他引:1  
王琪  杨成芳  王俊 《气象科学》2015,35(5):653-661
用EVAP(Extended Velocity Azimuth Processing)方法对2010年12月30日发生在山东半岛的一次海效应暴雪过程进行风场反演,以了解暴雪过程中雷达回波和低层风场的特征。得出以下结论:(1)烟台和威海暴雪发生时间不同步,降雪带有明显东移的过程,对应烟台强回波带逐渐向东移动,而威海回波位置少动。(2)雷达回波开始产生于渤海,减弱也始于渤海;强回波带的位置与风场的辐合区有很好的对应关系。(3)反演风场水平切变线的移动,会引起强回波带的波动;烟台北部切变线相对稳定,南部切变线西移,致使强回波带沿顺时针方向旋转;威海南部切变线位置相对稳定,北部切变线西移,引起强回波带沿逆时针方向旋转。(4)辐合切变线是由经过辽宁南下的东北风与山东半岛的西北风(西风)辐合构成;切变线受西风分量减弱的影响而发生移动。  相似文献   

16.
夏季东亚热带和副热带地区经向和纬向环流型的特征   总被引:32,自引:1,他引:32  
根据1958年7月8—18日和1957年7月21—30日东亚低纬度的两个悬殊的环流型,分析了在这两个时期内东亚低纬度环流的各种特征。结果得出,在经向和纬向环流期间,无论北半球纬向风带的位置,长波系统的配置,副热带高压活动的情况以及赤道辐合区的分布都有着很大的不同。此外,台风活动的次数也表现有很大悬殊。其所以有如此悬殊,可以从该两时期低纬度流场的特点来说明原因。在中国大陆上,在这两个时期的天气过程也很不同,在经向环流期间,大陆上的主要雨带成东北—西南向的,而在纬向环流期间,雨带便成东西向分布,并集中在江淮流域之间。 另外,我们又研究了在这两个时期内南北半球间环流关系,从手头所掌握的资料分析结果看,两者关系相当密切。在东亚低纬度经向环流期间,南半球(特别在澳洲)也盛行经向环流,并且在澳洲附近从南半球向北半球的质量输送也最强烈;而在东亚低纬度纬向环流期间,南半球也盛行纬向环流,澳洲附近的冷空气活动不显著,越过赤道向北的质量输送也比较弱。  相似文献   

17.
青藏高原OLR场的气候特征   总被引:1,自引:2,他引:1  
青藏高原OLR明显偏低。季节变化特点是1月到5月不断增值,3-5月增值迅速。5-8月高原北部继续增值,但南部云量增多,出现了低值区。低值区5月份在喜马拉雅山南侧,然后自东南向西北扩展,越过喜马拉雅山,7月低值轴线到达31°N附件;8月开始自西北向东南撒;9月退到喜马拉雅山南侧;10月开始下降,西北部下降迅速,东南部下降缓慢。年变化曲线特点是:高原北部为单峰型,最高值出现在8月;南部为双峰型,高值分别出现在5月和10月,低值出现在7月。  相似文献   

18.
基于1979—2015年中国区域CN05.1格点降水以及全球降水气候中心(GPCC)降水等数据资料,采用回归、合成分析等方法,分析了青藏高原东部(简称高原)冬季降水的南、北区域性差异及其年际变化对北极涛动(AO)异常的响应.结果表明:(1)高原北部和南部冬季降水都与AO异常存在密切关系,但降水的年际变化并不一致,对AO...  相似文献   

19.
利用日本东京大学气候系统研究中心、日本环境研究所和日本地球环境研究中心联合研制的全球海气耦合气候系统模式(MIROC_Hires)输出的逐日降水资料,探讨CO2浓度增加下我国极端降水非均匀性的响应及其可能机制。结果表明:(1)就气候平均而言,CO2浓度增加后,我国南部地区极端降水事件的发生更为集中,而北方地区的极端降水事件分布较平均。(2)从年际变率来看,我国南部地区极端降水事件集中度在"A1B试验"中偏小,年际之间的差异不大,而北方地区的极端降水集中度增加,年际之间变化剧烈。(3)CO2浓度增加后,南方和北方地区在水平和垂直上的增温幅度不一致,且整层大气平均的稳定度呈现出南北反相差异。这种不均匀增暖的分布很可能是导致我国极端降水非均匀性在CO2浓度增加后变化的原因。  相似文献   

20.
一次连续性暴雨中双雨带的成因分析   总被引:3,自引:1,他引:2  
利用NCEP/ NCAR 1 ?×1 ?再分析资料,对2005年6月17—22日发生在长江以南的一次连续性暴雨过程分析发现,在连续性暴雨过程中,长江以南有两支雨带存在,北雨带与冷锋降水以及副热带西风急流右后方的非地转场引起的质量调整有关。南雨带的形成与东、西风急流和南亚高压的共同作用有关:东风急流中心右后部的非地转场可形成反环流,有利于南雨带形成;南亚高压脊线附近以及东风急流的右后方的du/dt<0,可导致雨区附近及南部强的v-vg<0场出现;当西风急流南压,在雨区的北部即西风中心的后部可形成强的v-vg>0,三者共同作用的质量调整使雨区上空出现强辐散场导致暖区强降水出现。分析发现南雨带中层有θe锋区存在,该锋区有利于不稳定能量的释放,使暴雨加强,当南北锋区接近时雨带合并。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号