首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文使用1961~1995年逐月青藏高原地区大气视热量源汇<Ql>资料、1961~1990年青藏高原地区积雪日数和积雪深度资料、美国NCEP/NCAR的再分析资料以及1975~1994年全球OLR资料,讨论了高原大气热状况年际变化及其与大气环流的关系,发现:高原地区大气热源年际变化明显,其中春季和秋季高原地区<Ql>的变率最大,并且水平分布很不均匀;当冬季高原冷源弱(或强)时,东亚大槽位置偏东(或西),对应着东亚强(或弱)的冬季风;夏季高原热源强(或弱)的年份,在高原及其邻近地区的对流层中、低层为偏差气旋环流(或反气旋环流),在中国长江流域低层为异常的西南风(或东北风),对应着东亚强(或弱)的夏季风,夏季高原热源强度还与南亚高压的强度和位置有关;春季4月的积雪状况与夏季高原大气热源强度有明显关系;夏季高原热源与同期青藏高原东南部、孟加拉湾、中南半岛、东南亚、中国西南部、长江流域和从黄海到到日本海一带对流有明显正相关  相似文献   

2.
Carried out is the study of the response of microwave radiation of the ocean-atmosphere system to the horizontal heat transfer in the atmospheric boundary layer (ABL). Model estimates are obtained for the radiation on the wave lengths of 0.6, 0.8, 1, 1.35, and 1.6 cm. It is demonstrated that the value and sign of bright ness temperature contrasts induced by the horizontal transfer depend on the ABL density stratification and transfer direction relative to the orientation of horizontal gradients of air temperature and air humidity. Variations of brightness temperature in the ABL at the wave length of 1.35 cm reach 30–40 K. Ob served is the high correlation between the variations of brightness temperature in the ABL at the wave length of 1.35 cm and the vertical fluxes of sensible and la tent heat for different types of the ABL stratification and for different conditions of advective transport.  相似文献   

3.
4.
The chemical removal of SO2 in the presence of different aerosol systems has been investigated in laboratory experiments using a dynamic flow reactor. The aerosols consisted of wetted particles containing one of the following substances: MnCl2, Mn(NO3)2, MnSO4, CuCl2, Cu(NO3)2, CuSO4, FeCl3, NaCl. The SO2 removal rate R was measured as a function of the SO2 gas phase concentration (SO2)g, the spatial metal concentration CMe, and the relative humidity rH in the reactor. A first-order dependence with regard to (SO2)g was observed for each type of aerosol. For the Mn(II) and Cu(II) aerosols R was found to be a non-linear function of CMe except for MnSO4 and Cu(NO3)2 particles. The removal rate showed a significant increase with the relative humidity particularly when rH was close to the deliquescence point of the wetted particles. Among the Mn(II) and Cu(II) aerosols investigated Mn(NO3)2 was found to be most efficient for the chemical removal of SO2 at atmospheric background conditions, especially in haze and fog droplets. The results further indicate that the catalytic oxidation of S(IV) in such aerosol systems may be as efficient as its oxidation by H2O2 in cloud water.  相似文献   

5.
Enclosure measurements have been performed on a bare mineral soil at an experimental field site near Heidelberg, Germany. From observed molecular hydrogen (H2) mixing ratio changes in the enclosure, deposition velocities were calculated ranging from  8.4 × 10−3  to  8.2 × 10−2 cm s−1  and with an annual mean value of  3.1 × 10−2 cm s−1  . In the studied range of  2– 27 °C  , the uptake showed a significant temperature dependence. However, this turned out not to be the primary driving mechanism of the uptake flux. Soil moisture content, co-varying with temperature, was identified as the major parameter being responsible for the diffusive permeability of H2 in the soil and the final rate of H2 uptake. A simple Millington–Quirk diffusion model approach could largely explain this behaviour and yielded a diffusion path length of H2 in the studied soil of only 0.2–1.8 cm, suggesting that total H2 consumption occurs within the first few centimetres of the soil. The diffusion model, when applied to continuous measurements of soil moisture content, atmospheric pressure, temperature and the mixing ratio of H2 in the atmosphere, could largely reproduce the measured deposition flux densities, assuming a mean thickness of the diffusion path length of 0.7 cm.  相似文献   

6.
In a study using the plume from the Four Corners power plant, near Farmington, N.M., lee waves were observed during times when the plume flowed across the Hogback. Wavelengths were typically about 1.2 km; wave amplitudes were more variable, ranging from 20 to 100 m. The observed amplitudes imply an obstacle that is broader and shallower than is actually the case. This is in agreement with laboratory studies that show the existence of regions of complex flow both upstream and downstream from an obstacle, which have the effect of broadening the region over which laminar flow occurs. Visual observation, measurement of the plume cross-sectional area both upstream and downstream from the Hogback, and measurement of plume aerosol concentrations show that turbulent and eddy flow over and downwind from the Hogback increase the rate of mixing of the plume with the surrounding atmosphere. This in turn increases the rate at which plume components come into contact with the ground.  相似文献   

7.
In the fall of 1968 an International Intercomparison Experiment was conducted to compare, among other things, acoustic anemometers designed for measurements of atmospheric turbulence. Excellent agreement was obtained in measurements of the vertical component, but an important discrepancy was revealed in measurements of the downwind velocity. The discrepancy proved far more significant in the cospectra than in the spectra themselves. It is evident that great care must be taken in the design of such instruments. An acoustic instrument was shown to have insufficient signal-to-noise ratio to serve as a thermometer under the near-neutral conditions often encountered over water.Comparison of the data-handling and data-analysis techniques showed that although the methods differed widely, the results were essentially identical.  相似文献   

8.
The seasonal mean extra-tropical atmospheric response to El Niño/Southern Oscillation (ENSO) is assessed in the historical and pre-industrial control CMIP5 simulations. This analysis considers two types of El Niño events, characterized by positive sea surface temperature (SST) anomalies in either the central equatorial Pacific (CP) or eastern equatorial Pacific (EP), as well as EP and CP La Niña events, characterized by negative SST anomalies in the same two regions. Seasonal mean geopotential height anomalies in key regions typify the magnitude and structure of the disruption of the Walker circulation cell in the tropical Pacific, upper tropospheric ENSO teleconnections and the polar stratospheric response. In the CMIP5 ensembles, the magnitude of the Walker cell disruption is correlated with the strength of the mid-latitude responses in the upper troposphere i.e., the North Pacific and South Pacific lows strengthen during El Niño events. The simulated responses to El Niño and La Niña have opposite sign. The seasonal mean extra-tropical, upper tropospheric responses to EP and CP events are indistinguishable. The ENSO responses in the MERRA reanalysis lie within the model scatter of the historical simulations. Similar responses are simulated in the pre-industrial and historical CMIP5 simulations. Overall, there is a weak correlation between the strength of the tropical response to ENSO and the strength of the polar stratospheric response. ENSO-related polar stratospheric variability is best simulated in the “high-top” subset of models with a well-resolved stratosphere.  相似文献   

9.
10.
11.
Stably stratified flow in a marine atmospheric surface layer   总被引:2,自引:1,他引:2  
Data from the marine atmospheric surface layer have been analysed. The data set consists of about two weeks with tower measurements up to 31 m of mean profiles of wind, temperature, and humidity, together with 20 Hz turbulence data. Mean wind, temperature, and humidity profiles up to 2000 m are also available from pibal trackings and radio soundings. Wave height was measured at 2 Hz, using an inverted echo-sounder.It was found from pibal wind profiles that low level jets were present during 2/3 of the measurements, having their maxima in the height interval 40 to 300 m. Here only data from the remaining 1/3 of the measurements, without low level jets, have been analysed.Non-dimensional wind and temperature gradients agree with results over homogeneous land surfaces as regards stability dependence during stable conditions that prevailed during this experiment. Linear regression gave m = 1 + 6.8z/L and m = 1 + 8.3z/L. No significant sea wave influence was found. The same was vrue for me dimensionless standard deviations of the three wind components, except for the vertical component. The expected wind speed dependence was found for the neutral drag coefficient, givingC dN = 0.109U + 0.33 at 10 m, and a dependence on the wave parameter,C/u *, was confirmed. Note, however, that the data set was restricted to low and moderate wind speeds and that stratification was mainly stable.Power spectra, non-dimensionalized according to suface-layer theories, do not follow the expected stability dependence. It was shown that this may be a consequence of the presence of gravity waves in the stable marine boundary layer. Indicators of gravity waves were found in most runs. The TKE budget agrees with findings over homogeneous land areas. The pressure transport term was found to be a source of energy also for near neutral conditions.  相似文献   

12.
The atmospheric circulation response to decadal fluctuations of the Atlantic meridional overturning circulation (MOC) in the IPSL climate model is investigated using the associated sea surface temperature signature. A SST anomaly is prescribed in sensitivity experiments with the atmospheric component of the IPSL model coupled to a slab ocean. The prescribed SST anomaly in the North Atlantic is the surface signature of the MOC influence on the atmosphere detected in the coupled simulation. It follows a maximum of the MOC by a few years and resembles the model Atlantic multidecadal oscillation. It is mainly characterized by a warming of the North Atlantic south of Iceland, and a cooling of the Nordic Seas. There are substantial seasonal variations in the geopotential height response to the prescribed SST anomaly, with an East Atlantic Pattern-like response in summer and a North Atlantic oscillation-like signal in winter. In summer, the response of the atmosphere is global in scale, resembling the climatic impact detected in the coupled simulation, albeit with a weaker amplitude. The zonally asymmetric or eddy part of the response is characterized by a trough over warm SST associated with changes in the stationary waves. A diagnostic analysis with daily data emphasizes the role of transient-eddy forcing in shaping and maintaining the equilibrium response. We show that in response to an intensified MOC, the North Atlantic storm tracks are enhanced and shifted northward during summer, consistent with a strengthening of the westerlies. However the anomalous response is weak, which suggests a statistically significant but rather modest influence of the extratropical SST on the atmosphere. The winter response to the MOC-induced North Atlantic warming is an intensification of the subtropical jet and a southward shift of the Atlantic storm track activity, resulting in an equatorward shift of the polar jet. Although the SST anomaly is only prescribed in the Atlantic ocean, significant impacts are found globally, indicating that the Atlantic ocean can drive a large scale atmospheric variability at decadal timescales. The atmospheric response is highly non-linear in both seasons and is consistent with the strong interaction between transient eddies and the mean flow. This study emphasizes that decadal fluctuations of the MOC can affect the storm tracks in both seasons and lead to weak but significant dynamical changes in the atmosphere.  相似文献   

13.
Summary ?Using the data of 6 automatic heat balance observation (AWS) stations and a data set of 52 surface observation stations over the Qinghai-Tibetan Plateau (“the Plateau”) and surroundings, the horizontal distribution is studied of “apparent atmospheric heat sources” 〈Q 1〉 and of “apparent atmospheric moisture sinks” 〈Q 2〉. The AWS stations were established during the period May to August 1998 of the Tibetan Plateau Meteorological Experiment (second TIPEX) by a cooperation of China and Japan. For this period the Plateau mean of 〈Q 1〉 is positive. Its value of 74 W/m2 is a little greater than a climate value and than values from MONEX and the first TIPEX in 1979, respectively. Also the corresponding 〈Q 2〉 is positive. Hence during that time the Plateau is a heat source and a moisture sink. A day-to-day change of 〈Q 1〉 and 〈Q 2〉 is more pronounced over the middle and east part of the Plateau than over the west part. Diagnostics accompanied by numerical simulations are used to study the daily relationship between 〈Q 1〉 over the Plateau and the weather over China and Asia for this summer. The results suggest that 〈Q 1〉 may affect precipitation over northern China and position of the west Pacific subtropical high. Abnormal southward retreat of this Pacific high seems to have caused the second flood over the middle and lower Yangtse river basin in July. Received May 20, 2001; revised February 2, 2002  相似文献   

14.
The three-dimensional stability problem is investigated for a family of velocity and density profiles similar in form to those expected for large-amplitude internal gravity waves near a critical level. These profiles exhibit regions of high shear and stable stratification alternating with regions of weak shear and unstable stratification. Analytical solutions are given for inviscid, neutral modes that are similar to those found under neutral conditions with stable stratification. Neutral modes form closed streamline patterns centered at locations of maximal shear, and are not strongly influenced by nearby regions of unstable stratification. Unstable modes are computed numerically. It is shown that the instability mechanism for these wave-like flows fundamentally three-dimensional in character and exhibits both shear and convective dynamics. For flows with parameter values below the neutral curves, unstable modes oriented in the streamwise direction undergo shear instability, while modes oriented orthogonally are convectively unstable. In addition to their intrinsic physical relevance, the results of this study have important implications for the physics and the numerical modeling of breaking internal gravity waves. Two-dimensional models will bias the breaking dynamics by eliminating the possibility for convection oriented in the transverse plane.  相似文献   

15.
The natural low frequency variability of the sea-ice thickness in the Arctic is investigated based on a 10 000 years simulation with a one-dimensional thermodynamic sea-ice model forced by random perturbations of the air surface temperature and solar radiation. The simulation results suggest that atmospheric random perturbations are integrated by the sea-ice. Moreover those perturbations occurring at the onset of ice melting force the largest ice thickness anomalies, which are successively amplified in summer by the albedo feedback and damped in winter by the feedback of the heat conduction through the ice. They also result in a global shift of the melting season which, in the mean annual cycle, leads to earlier melting as compared to the mean climatological cycle. The power spectrum of the ice anomalies suggests that the thickness of the perennial ice should vary preferentially on a time scale of approximately 20 years. The shape of the spectrum is consistent with that of a first order Markov process in which the characteristic time scale of the ice fluctuations would be the relaxation time scale associated with the linear feedback. The equivalent Markov model is constructed by linearizing the ice growth rate anomaly equations and allows us to derive an analytical expression of the feedback and of the forcing of the anomalies. The characteristic time scale depends explicitly on those model parameters involved in the atmosphere-ice interaction but also on the mean seasonal characteristics of the forcing and of the ice thickness. Received: 18 August 1999 / Accepted: 10 May 2000  相似文献   

16.
Based on diagnostic analysis of reanalysis data for 58-year, the distribution characteristics of decadal variability in diabatic heating, transient eddy heating and transient eddy vorticity forcing related to the sea surface temperature (SST) anomalies over the North Pacific, as well as their relationship with anomalous atmospheric circulation have been investigated in this paper. A linear baroclinic model(LBM) was used to investigate atmospheric responses to idealized and realistic heat and vorticity forcing anomalies, and then to compare relative roles of different kinds of forcing in terms of geopotential height responses. The results illustrate that the responses of atmospheric height fields to the mid-latitude heating can be either baroclinic or barotropic. The response structure is sensitive to the relative horizontal location of heating with respect to the background jet flow, as well as to the vertical profile of heating. The response to the idealized deep heating over the eastern North Pacific, mimicking the observed heating anomaly, is baroclinic. The atmospheric response to the mid-latitude vorticity forcing is always barotropic, resulting in a geopotential low that is in phase with the forcing. The atmospheric responses to the realistic heat and vorticity forcing show the similar results, suggesting that diabatic heating, transient eddy heating and transient eddy vorticity forcing can all cause atmospheric anomalies and that the vorticity forcing plays a relatively more important role in maintaining the equivalent-barotropic structure of geopotential height anomalies.  相似文献   

17.
A numerical model of convective heat transfer due to isolated thermals in the atmospheric boundary layer is used to describe the temperature profile transformation in undisturbed conditions as a result of intensive dry free convection. Based on some assumptions, the heat transfer Equation (2) is transformed to the form (14) in which the coefficients and the function F are expressed by (d/dz)(ln ) and by parameters of thermals. Equation (14) has been solved numerically with the help of Equation (15) obtained from the statics equation because of Equation (8). The size distribution function f(z, r, t) of the thermals is discrete (Table I), according to Vulf'son (1961). On Figures 1 and 2 are plotted successive temperature profiles for a ground inversion, transformed due to free convection and turbulence (Figures 1a and 2a), and due to turbulence only (Figures 1b and 2b). The profiles are computed from Equation 14 (Figures 1a and 2a) and Equation 16 (Figures 1b and 2b) for k z= 1 m2 s–1 (Figure 1) and k z= 10 m2 s–1 (Figure 2). On Figure 3 the real temperature profiles in Sofia for June 22nd 1976 are compared with the profiles computed using the real initial profile for 4.30 h local time. Good qualitative agreement can be seen.  相似文献   

18.
Atmospheric surface-layer measurements of terms in the equation for the streamwise heat flux confirm previous results in both laboratory and atmosphere that the temperature-pressure gradient correlation acts as a sink, approximately equal in magnitude to the production term. The measured viscous dissipation term is independent of stability and represents less than 10% of the production term over the range of experimental stability conditions. Models for the temperature-pressure gradient correlation are compared with the measurements.  相似文献   

19.
Modelled atmospheric response to changes in Northern Hemisphere snow cover   总被引:1,自引:0,他引:1  
The surface boundary conditions are altered in a numerical simulation of January climate by prescribing (a) higher and (b) lower than average snow extent over Northern Hemisphere land masses. The anomalies in snow cover are shown to have quite a strong impact on the mean climatic state. Associated with an increase in the areal extent of the snow, there is a significant reduction in temperature throughout the lower troposphere. There are also large increases in sea-level pressure over most land areas. Significant responses in the mass field are also seen at 500 hPa where reductions in atmospheric thickness lead to significant negative anomalies in the height field. Responses are also seen non-locally, over both the North Pacific and North Atlantic basins. The impact of increased snow on cyclone tracks is also examined. A reduction in cyclones is noted over both continents and over the western sectors of both ocean basins. Over the North Atlantic basin this reduction extends across over Europe, significantly weakening the storm track. In the North Pacific, cyclone density is reduced in the west while in the east, there is actually a strengthening of the storm tracks. There are corresponding changes in the genesis of cyclones in both of these regions. The change in cyclogenesis, intensity and density is demonstrated to be associated with changes in baroclinicity between the two experiments. The anomalous snow boundary conditions lead to significant changes in the meridional temperature gradients over both ocean basins which impact on the baroclinic zones. Received: 5 January 1996 / Accepted: 4 May 1996  相似文献   

20.
The atmospheric heat source over the Bolivian plateau for a mean January   总被引:2,自引:0,他引:2  
The atmospheric heat sources of large plateaus strongly influence the general circulation particularly in the summer season. The Bolivian plateau and the adjacent areas affect the upper tropospheric flow in a typical summer month by developing an anticyclone and deflecting the prevailing westerlies. The plateau initially warms the atmosphere through sensible heating and then through latent heating as thunderstorms develop.The atmospheric heat source over the Bolivian and adjacent plateau was computed employing conventional surface and satellite radiation data for the mean January 1979. Because of a lack of direct ground temperature data, the surface radiation was estimated following an empirical formula devised for some earlier Tibetan studies.The results revealed that the latent heating developing in the eastern and northeastern part of the plateau is the biggest contributor to the atmospheric heat source (500 W m-2). A comparison of these results against similar recent results from Tibet showed that the atmospheric heat source in South America is stronger than that over Tibet, primarily because of increased rainfall over Bolivia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号