首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers settling control of a recording head for a dual actuator system for hard disk drives consisting of a coarse actuator (voice coil motor, VCM) and a fine actuator (peizoelectric transducer, PZT). The design method proposed in this paper is called the dual actuator reference trajectory re-design (RTRD). In this method, the design is divided into three steps. In the first step, the coarse actuator loop is designed to achieve stability and basic performance. In the second step, the fine actuator path is designed by loop shaping for superior performance of the overall system. Finally, the reference signals are generated for both the coarse and fine actuators by minimizing the square integral of jerk during the transition. The reference signals are updated or redesigned in real time as the recording head approaches the target track for smooth landing and minimal residual vibration. The “soft switching” technique is applied for gradually introducing the fine actuator (PZT actuator), which may shorten the settling time and achieve a smooth settling response. The effectiveness of the proposed approach is evaluated by simulations.  相似文献   

2.
Modern hard disk drive uses voice coil motor to move its actuator across spinning disk to access data stored on disk surfaces. To achieve higher area density with narrow tracks, piezoelectric (PZT) ceramics are deployed as secondary actuator in many high capacity drives to increase servo control bandwidth for better positioning accuracy. Piezoelectric secondary stage actuators, often called dual stage actuator or DSA, integrated on suspensions are discussed in this paper. An analytic model is presented to derive a secondary order equation of motion relating suspension dynamics to key suspension and PZT geometric parameters, material properties and voltage applied to PZT. DSA DC gain is then obtained from the equation of motion. By introducing a suspension configuration without PZT installed, the DSA DC gain is then further linked to suspension dynamics parameters. With the equation of motion and DSA DC gain model, design directions for higher stroke and tradeoffs for dynamics and robustness are discussed.  相似文献   

3.
 To increase the recording density of hard disk drives (HDDs), we developed a push–pull multi-layered piggyback PZT actuator that enables fine positioning by a dual-stage servo system. This PZT actuator consists of 31-mode push–pull multi-layered PZT strips and a head suspension. It generates a 1.4-μm effective radial head displacement at 5 V. This displacement is twice that of conventional piggyback actuators. The main resonance frequency of the actuator is higher than 9 kHz, its lifetime is longer than five years, and it has a self-latch property. These features mean that the developed actuator can meet all the requirements for implementation in HDD servo systems, including a track density of 100 kTPI (kilo-tracks per inch). The actuator was implemented in two types of HDDs (A-type and B-type), which reduced the repeatable and non-repeatable positioning errors (by 40 to 45% and 28 to 34%, respectively). Received: 25 July 2001/Accepted: 11 December 2001  相似文献   

4.
This paper describes development of a motion controller for Shape Memory Alloy (SMA) actuators using a dynamic model generated by a neuro-fuzzy inference system. Using SMA actuators, it would be possible to design miniature mechanisms for a variety of applications including miniature robots for micro manufacturing. Today SMA is used for valves, latches, and locks, which are automatically activated by heat. However it has not been used as a motion control device due to difficulty in the treatment of its highly nonlinear strain-stress hysteresis characteristic. In this paper, a dynamic model of a SMA actuator is developed using ANFIS, a neuro-fuzzy inference system provided in MATLAB environment. Using neuro-fuzzy logic, the system identification of the dynamic system is performed by observing the change of state variables (displacement and velocity) responding to a known input (input voltage to the current amplifier for the SMA actuator). Then, using the dynamic model, the estimated input voltage required to follow a desired trajectory is calculated in an open-loop manner. The actual input voltage supplied to the current amplifier is the sum of this open-loop input voltage and an input voltage calculated from an ordinary PD control scheme. This neuro-fuzzy logic-based control scheme is a very generalized scheme that can be used for a variety of SMA actuators. Experimental results are provided to demonstrate the potential for this type of controller to control the motion of the SMA actuator.  相似文献   

5.
This paper presents an active damping control approach applied to piezoelectric actuators attached to flexible linkages of a planar parallel manipulator for the purpose of attenuation of unwanted mechanical vibrations. Lightweight linkages of parallel manipulators deform under high acceleration and deceleration, inducing unwanted vibration of linkages. Such vibration must be damped quickly to reduce settling time of the manipulator platform position and orientation. An integrated control system for a parallel manipulator is proposed to achieve precise path tracking of the platform while damping the undesirable manipulator linkage vibration. The proposed control system consists of a PD feedback control scheme for rigid body motion of the platform, and a linear velocity feedback control scheme applied to piezoelectric actuators to damp unwanted linkage vibrations. In this paper, we apply the proposed vibration suppression algorithm to two different types of piezoelectric actuators and evaluate their respective performances. The two piezoelectric actuators are (i) a PVDF layer applied to the flexible linkage and (ii) PZT actuator segments also applied to the linkage. Simulation results show that both piezoelectric actuators achieve good performance in vibration attenuation of the planar parallel manipulator. The dynamics of the planar parallel platform are selected such that the linkages have considerable flexibility, to better exhibit the effects of the vibration damping control system proposed.  相似文献   

6.
A stability result is given for hybrid control systems singularly perturbed by fast but continuous actuators. If a hybrid control system has a compact set globally asymptotically stable when the actuator dynamics are omitted, or equivalently, are infinitely fast, then the same compact set is semiglobally practically asymptotically stable in the finite speed of the actuator dynamics. This result, which generalizes classical results for differential equations, justifies using a simplified plant model that ignores fast but continuous actuator dynamics, even when using a hybrid feedback control algorithm.  相似文献   

7.
In this paper, we report a novel capillary-driven self-assembly technique which proceeds in an air environment and demonstrate it by assembling square piezoelectric transducer (PZT) actuators for 28 diffuser valve micropumps on a 4-inch pyrex/silicon substrate: on the substrate, binding sites are wells of 24 /spl mu/m in depth and the only hydrophilic areas; on the bonding face of the PZT actuator, the central hydrophilic area is a square identical in size to the binding site, and the rim is hydrophobic; acrylate-based adhesive liquid is dispensed across the substrate and wets only the binding sites; the hydrophilic areas on the introduced PZT actuators self-align with the binding sites to minimize interfacial energies by capillary forces from the adhesive droplets; the aligned PZT actuators are pressed to contact the gold coated substrate by their rims and the adhesive is polymerized by heating to 85 /spl deg/C for half an hour, so permanent mechanical and electrical connections are established, respectively, at the center and rim of each PZT actuator. These pumps perform with high uniformity, which is indicated by a small standard deviation of their resonant frequencies to pump ethanol: the average resonant frequency is 6.99 kHz and the standard deviation is 0.1 kHz. Compared with the conventional bonding process with highly viscous silver epoxy, this assembly method has several major advantages: highly accurate placement with self-alignment, controllable adhesive thickness, tilt free bonding, low process temperature and high process repeatability.  相似文献   

8.
Utilizing a solvent-assisted bonding process, two diffuser-type polymethylmethacrylate (PMMA) peristaltic micropumps are fabricated with a linear array of circular microchambers with a depth and diameter of 15 m and 7 mm, respectively, actuated using either square or circular PZT actuators. Experimental trials are performed to characterize the performance of the two micropumps under driving frequencies ranging from 80 to 150 Vpp and actuation frequencies in the range of 10 Hz to 1 kHz. The results reveal that the micropump with square PZT actuators generates a maximum pumping rate and back pressure of 217 l/min and 9.2 kPa, respectively, while the micropump with circular actuators generates a maximum flow rate of 131 l/min and a back pressure of 2.7 kPa. ANSYS finite element simulations demonstrate two events. First, given an equivalent surface area, the circular actuators undergo a greater displacement than the square actuators under given actuation conditions. In other words, the circular actuator design is more efficient to represent a higher ratio of the displacement to the actuation area (d/A). However, the circular actuators with the surface area of 38.47 mm2 are smaller than the square actuators (49 mm2). In addition, it is inferred that the relatively poorer performance of the circular actuators is due in part to thermal damage of the PZT patches during their removal from the bulk PZT chip using a laser cutting device in the pump fabrication process. Secondly, when the shape of the effective working area for the actuation is rectangular which is usual in a MEMS design, the rectangular actuator with length of 7 mm has significantly higher displacement (0.71 m) than that of the circular actuator with diameter of 7 mm (0.396 m). Consequently, a rectangular actuator design presents a more practical solution for higher performance of micro-actuators.  相似文献   

9.
A switching contact task control for hydraulic actuators is proposed. The controller is built upon three individually designed control laws for three phases of motion: (1) position regulation in free space, (2) impact suppression and stable transition from free to constrained motion and (3) force regulation in sustained‐contact motion. The position and force control schemes are capable of asymptotic set‐point regulation in the presence of actuator friction and without the complexity of sliding mode or adaptive control techniques. The intermediate impact control scheme is included for the first time to dampen the undesirable impacts and dissipate the impact energy that could potentially drive the whole system unstable. The solution concept and the stability of the complete switching control system are analyzed rigorously using the Filippov's solution concept and the concept of Lyapunov exponents. Both computer simulations and experiments are carried out to demonstrate the efficacy of the designed switching control law. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
在多输入多输出(Multiple-input multiple-output,MIMO)非线性系统的执行器故障容错控制问题中,控制器能够处理的执行器故障集合的大小与执行器分组方法有很大关系.为扩大系统可处理的执行器故障集合,本文针对一类具有执行器故障的MIMO非线性最小相位系统,提出基于多模型切换(Multiple model switching and tuning,MMST)执行器分组的自适应补偿控制方法.考虑系统的执行器卡死、部分失效和完全失效故障,在微分几何反馈线性化的基础上,研究基于多模型切换的执行器分组切换指标和切换策略,设计了基于反演控制的自适应补偿跟踪控制律,所设计的控制律能保证系统在执行器故障时闭环稳定,渐近跟踪给定的参考信号,且提出的分组方法扩大了可补偿的执行器故障集合.仿真结果表明了本文设计方法的有效性.  相似文献   

11.
In the last decade, lead zirconate titanate oxide (PZT) thin-film actuators have received increasing attention because of their high frequency bandwidth, large actuation strength, fast response, and small size. The PZT film thickness is usually less than several microns as opposed to hundreds of microns for bulk PZT patches that are commercially available. As a result, PZT thin-film actuators pose unique vibration issues that do not appear in actuators with bulk PZT. Two major issues affecting actuator performance are the frequency bandwidth and the resonance amplitude. As an electromechanical device, a PZT thin-film actuator's bandwidth and resonance amplitude depend not only on the lowest natural frequency ωn of the actuator's mechanical structure but also on the corner frequency ωc of the actuator's RC-circuit. For PZT thin-film actuators, the small film thickness implies large film capacitance C and small ωc. When the size of the actuator decreases, ωn increases dramatically. As a result, improper design of PZT thin-film actuators could lead to ωc  ωn substantially reducing the actuator bandwidth and the resonance amplitude. This paper is to demonstrate this phenomenon through theoretical analyses and calibrated experiments. In the theoretical analyses, frequency response functions of a PZT thin-film actuator are obtained to predict 3 dB actuator bandwidth and resonance amplitude for cases when ωc  ωn, ωc  ωn and ωc  ωn. In the experiments, frequency response functions of a fixed–fixed silicon beam with a 1 μm thick PZT film are measured through use of a laser Doppler vibrometer and a spectrum analyzer. The silicon beam has multiple electrodes with a wide range of resistance R and corner frequency ωc. The experimental results confirm that the actuator bandwidth and resonance amplitude are substantially reduced when ωc  ωn.  相似文献   

12.
This article presents a novel hybrid actuator scheme to actively and robustly control the endpoint position of a very flexible single-link manipulator. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor, which produces a desired angular motion, is determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator to activate the commanded motion. During the motion, the undesirable oscillation caused by the torque, based on the rigid link dynamics, is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, desired tip motion is achieved. Both regulating and tracking control responses are analyzed through experimental implementation to demonstrate high performance characteristics to be accrued from the proposed methodology. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
This paper describes the track-following control of a dual-stage hard disk drive system using neural-networks. A neural-network approach to on-line learning control, and a real-time implementation for a dual-stage hard disk drive, are presented. The use of the dual-stage actuator in hard disk drive systems has become a means of achieving increased servo actuator bandwidth. The dual-stage actuator presented here uses a voice-coil motor (VCM) as a coarse actuator, and a piezoelectric actuator (PZT) as a fine actuator. The control system consists of a series combination of both a plant with a feedback loop and a neural-network with a feedforward loop. The neural-network functions as the reference input filter, and it organizes a new reference signal to the closed-loop circuit. Numerical and experimental results for the track-following control system of the dual-stage hard disk drive show the validity of the proposed neuro-control system.  相似文献   

14.
ABSTRACT

This paper proposed a new adaptive integral sliding mode FTC scheme to deal with the actuator faults and failure. The scheme combines integral sliding mode control, control allocation scheme and adaptive strategy. The unknown actuator faults are handled by adaptive modulation gain of nonlinear ISMC law. To cope with complete failure, control allocation scheme is integrated with the baseline controller to provide tolerance. The proposed strategy relies on the estimate of actuator effectiveness. Therefore, an adaptive sliding mode observer based fault reconstruction scheme is proposed in this paper. The proposed scheme is implemented on dissimilar redundant actuation system driven by hydraulic and electro-hydraulic actuators. In nominal and faulty conditions, both actuators are contributing to achieving the desired control surface deflection. However, when the actuator failure occurs, the control signals are reallocated to the redundant actuator. The problem of dynamics mismatch is addressed using fractional order controller designed in an inner loop. The comparison with the existing literature is also conducted in the simulation to validate the dominant performance.  相似文献   

15.
Piezoelectric micro-electromechanical systems (MEMS) often adopt a membrane structure to facilitate sensing or actuation. Design parameters, such as membrane size, thickness of the piezoelectric thin film, and electrode types, have been studied to maximize actuation, sensitivity, or coupling coefficient. This paper is to demonstrate numerically and experimentally that the size of silicon residue and its relative size to the top electrode are two critical yet unrecognized parameters in maximizing the actuation displacement of PZT thin-film membrane actuators. To study effects of the silicon residue, we have developed a finite element model using ANSYS. The model consists of five components: a square passive silicon membrane, a silicon substrate, a PZT thin film, a square top electrode, and a silicon residue region. In particular, the silicon residue has a circular inner diameter and a square outer perimeter with a trapezoidal cross section. Predictions of the finite element model lead to several major results. First, when the silicon residue is present, there exists an optimal size of the top electrode maximizing the actuator displacement. Second, the optimal electrode size is roughly 50–60% of the inner diameters of the silicon residue. The displacement of the membrane actuator declines significantly as the electrode overlaps with the silicon residue. Third, the maximal actuator displacement decreases as the inner diameter of the silicon residue decreases. Aside from the finite element analysis, a mechanics-of-material model is also developed to predict the electrode size that maximizes the actuator displacement. To verify the simulation results, eight PZT thin-film membrane actuators with progressive electrode sizes are fabricated. These actuators all have a square membrane of 800 μm × 800 μm with the inner diameter of the silicon residue controlled between 500 and 750 μm. A laser Doppler vibrometer is used to measure the actuator displacements. The experimental measurements confirm that there exists an optimal size of the top electrode maximizing the actuator displacement.  相似文献   

16.
针对一类具有执行器卡死或/和变执行器故障的多输入多输出(MIMO)非线性最小相位系统提出了自适应容错跟踪控制方案.结合系统特征对系统执行器进行分类,用神经网络逼近执行器未知故障函数,采用模型参考自适应容错控制方法设计控制律.所设计的控制律不仅保证闭环系统稳定,而且跟踪误差一致最终有界.仿真结果表明了所提出方法的有效性.  相似文献   

17.
飞翼飞行器的操纵面故障自适应补偿控制   总被引:1,自引:0,他引:1  
本文针对具有操纵面卡死、失效故障以及执行器饱和的飞翼飞行器纵向运动,考虑系统的预定动态性能,提出了一种自适应反步补偿跟踪控制方案.设计预定动态性能(prescribed performance bound,PPB)边界以保证系统的跟踪误差,采用二阶指令滤波器限制执行器的饱和,通过控制分配避免执行器故障后对横侧向运动的影响.所设计的自适应反步补偿跟踪控制律能够保证系统对参考信号的渐近跟踪.仿真结果表明了本文方法的有效性.  相似文献   

18.
Novel PZT thin film actuators for optical applications were proposed. Key issues for realizing the actuators such as PZT thin film processes, mechanical properties evaluation of thin films, and design for laminated structure were described. [1 1 1]-oriented PZT films were obtained by anneal/non-anneal sputtering process. Also for PZT dry etching, it was made clear low pressure and low temperature conditions were advantageous for high selectivity and etch rate. ECR etcher was used and etch rate of 1000 A/min and selectivity of 0.56 to photoresist mask were obtained. Young’s modulus and built-in stress of PZT film, measured by load-deflection method, were 72 GPa, −335 MPa respectively. Using these results, calculated deflection of each actuator was on the order of a few microns to 20 microns. It was confirmed that deflection of actuators would be enough for the application.  相似文献   

19.
This article presents new feedback actuators that achieve accurate position control of a flexible gantry robot arm. Translational motion in the plane is generated by two dc motors and controlled by applying electric fields to electro‐rheological (ER) clutch actuators. On the other hand, during control action of translational motion, a flexible arm attached to the moving part produces undesirable oscillations due to its inherent flexibility. Oscillations are actively suppressed by employing feedback voltage to the piezoceramic actuator attached to the surface of the flexible arm. Consequently, an accurate position control at the end‐point of the flexible arm can be achieved. To accomplish this control goal, governing equations of the proposed system are derived and written as transfer functions. Transfer functions are used in design of a set of robust H controllers. Electric fields to be applied to ER clutch and control voltage for the piezoceramic actuator are determined via H methodology which is incorporated with classical loop shaping design technique. To evaluate effectiveness of the proposed control system, experiments for both regulating and tracking controls are undertaken. ©1999 John Wiley & Sons, Inc.  相似文献   

20.
In most maglev (magnetic levitation) systems, redundant electromagnetic actuators are usually used to increase the stability and robustness of the levitation motion. However, the obvious interactions generate between the redundant actuators and other general electromagnetic actuators. In this paper, a new and efficient redundant levitation control strategy is developed to overcome the interactions in this maglev system. In the strategy, some separate general controllers are designed for all general actuators, and then some special controllers are used to real-time track the electromagnetic forces of all general actuators, and accordingly they create control signal for the redundant actuators to counteract the interactions among general actuators and redundant actuators. To further illustrate the strategy, a novel redundant actuation maglev system is then demonstrated, and a simplified expression of the redundant control strategy is investigated for the maglev system. The experimental results show that the redundant levitation controller successfully removes the interactions between redundant actuator and general actuators, and the redundant levitation controller maintains good robustness under disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号