首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In the present study, DNA from 27 grade I and grade II pediatric gliomas, including ganglioglioma, desmoplastic infantile ganglioglioma, dysembryoplastic neuroepithelial tumor, and pleomorphic xanthoastrocytoma was analyzed using the Illumina 610K Beadchip SNP-based oligonucleotide array. Several consistent abnormalities, including gain of chromosome 7 and loss of 9p21 were observed. Based on our previous studies, in which we demonstrated BRAF mutations in 3 gangliogliomas, 31 tumors were screened for activating mutations in exons 11 and 15 of the BRAF oncogene or a KIAA1549-BRAF fusion product. There were no cases with a KIAA1549-BRAF fusion. A BRAF V600E mutation was detected in 14 of 31 tumors, which was not correlated with any consistent pattern of aberrations detected by the SNP array analysis. Tumors were also screened for mutations in codon 132 in exon 4 of IDH1, exons 2 and 3 of KRAS, and exons 2–9 of TP53. No mutations in KRAS or TP53 were identified in any of the samples, and there was only 1 IDH1 R132H mutation detected among the sample set. BRAF mutations constitute a major genetic alteration in this histologic group of pediatric brain tumors and may serve as a molecular target for biologically based inhibitors.  相似文献   

2.
3.
Glial and glioneuronal tumors in children and adult demonstrate distinctive clinical, neuroradiological and molecular features depending on the pathological subtype and within a same subgroup according to the age. In children, gliomas are mainly located in the infratentorial part of the brain. They are most often benign and circumscribed but infiltrative tumors with dismal prognosis are recorded within the pons (DIGP) or the thalamus. Glioblastomas are very rare in children. In contrast, gliomas in adult mainly occur in the cerebral hemispheres and the most frequent subtype is glioblastoma. Glioneuronal tumors mainly occurred in children and young adults. In addition, although pilocytic astrocytomas, pleomorphic xanthoastrocytomas and gangliogliomas are classified into different subgroups according to the WHO 2007 classification, these tumors demonstrate similar neuroradiological findings: they are cystic with contrast enhancement of a mural nodule. Major advances have been made these last five years in the discovery of some master genes that are involved in gliomagenesis and point out differences between children and adults. In adults, infiltrative gliomas can be classified into two major subgroups depending on the existence or not of IDH mutations. IDH-dependent gliomagenesis encompasses diffuse grade II and grade III (they can also show additional molecular alterations such as TP53 mutation or 1p19q codeletion) and secondary glioblastomas. IDH-independent gliomagenesis include triple negative grade II gliomas, gliomatosis cerebri (grade III) and de novo glioblastomas. Pilocytic astrocytomas, pleomorphic xanthoastrocytomas and gangliogliomas share in common BRAF alterations. However, KIAA1549-BRAF fusion characterizes pilocytic astrocytomas whereas V600E BRAF mutation is mainly recorded in pleomorphic xanthoastrocytomas and gangliogliomas.  相似文献   

4.
Classifying adult gliomas remains largely a histologic diagnosis based on morphology; however astrocytic, oligodendroglial and mixed lineage tumors can display overlapping histologic features. We used multiplexed exome sequencing (OncoPanel) on 108 primary or recurrent adult gliomas, comprising 65 oligodendrogliomas, 28 astrocytomas and 15 mixed oligoastrocytomas to identify lesions that could enhance lineage classification. Mutations in TP53 (20/28, 71%) and ATRX (15/28, 54%) were enriched in astrocytic tumors compared to oligodendroglial tumors of which 4/65 (6%) had mutations in TP53 and 2/65 (3%) had ATRX mutations. We found that oligoastrocytomas harbored mutations in TP53 (80%, 12/15) and ATRX (60%, 9/15) at frequencies similar to pure astrocytic tumors, suggesting that oligoastrocytomas and astrocytomas may represent a single genetic or biological entity. p53 protein expression correlated with mutation status and showed significant increases in astrocytomas and oligoastrocytomas compared to oligodendrogliomas, a finding that also may facilitate accurate classification. Furthermore our OncoPanel analysis revealed that 15% of IDH1/2 mutant gliomas would not be detected by traditional IDH1 (p.R132H) antibody testing, supporting the use of genomic technologies in providing clinically relevant data. In all, our results demonstrate that multiplexed exome sequencing can support evaluation and classification of adult low-grade gliomas with a single clinical test.  相似文献   

5.
Adult grade II low-grade gliomas (LGG) are classified according to the WHO as astrocytomas, oligodendrogliomas or mixed gliomas. TP53 mutations and 1p19q codeletion are the main molecular abnormalities recorded, respectively, in astrocytomas and oligodendrogliomas and in mixed gliomas. Although IDH mutations (IDH1 or IDH2) are recorded in up to 85?% of low-grade gliomas, IDH negative gliomas do occur. We have searched for p53 expression, 1p19q codeletion and IDH status (immunohistochemical detection of the common R132H IDH1 mutation and IDH direct sequencing). Internexin alpha (INA) expression previously recorded to be associated with 1p19q codeletion (1p19q+) gliomas was also analysed. Low-grade gliomas were accurately classified into four groups: group 1, IDH+/p53?/1p19q?; group 2, IDH+/p53?/1p19q+; group 3, IDH+/p53+/1p19q?; and group 4, triple negative gliomas. In contrast to the WHO classification, this molecular classification predicts overall survival on uni- and multivariate analysis (P?=?0.001 and P?=?0.007, respectively). Group 4 carries the worst prognosis and group 2 the best. Interestingly, p53?+/INA? expression predicts lack of 1p19q codeletion (specificity 100?%, VPP 100?%). The combined use of these three molecular markers allow for an accurate prediction of survival in LGG. These findings could significantly modify LGG classification and may represent a new tool to guide patient-tailored therapy. Moreover, immunohistochemical detection of p53, INA and mR132H IDH1 expression could represent an interesting prescreening test to be performed before 1p19q codeletion, IDH1 minor mutation and IDH2 mutation detection.  相似文献   

6.
Low grade astrocytomas are the most common brain tumor in children. Recent studies have identified alterations in the BRAF serine/threonine kinase gene that result in mitogen activated protein kinase pathway activation. Herewith, we investigated the genetic changes of BRAF in pediatric low grade gliomas and their relation to pathological findings and Ki-67 proliferation index. The results showed gene fusions between KIAA1549 and BRAF in 66.7 % of tumors. The majority involved the KIAA1549–BRAF exon 16-exon 9 variant. Fusion junction between KIAA1549 exon 15 and BRAF exon 9 was found in five tumors, in which the myxoid component was the predominant. This has not been previously reported. No significant correlation was found between specific KIAA1549 and BRAF fusion junctions and Ki-67 index. All of the samples included in this study were tested for the presence of the BRAFV600E mutation, and no positive sample was found.  相似文献   

7.
A total of 343 brain tumors were studied for IDH1 and IDH2 mutations by direct sequencing and for protein expression by immunohistochemistry with mIDH1R132H antibody. Of these, 287 were gliomas (17 pilocytic astrocytomas, 13 grade II and 5 grade III astrocytomas, 167 primary (pGBMs) and 19 secondary (sGBMs) glioblastomas, 36 grade II and 26 grade III oligodendrogliomas and 4 grade II–III oligoastrocytomas). In gliomas, IDH1 mutations at codon R132 were identified in 22.3%, of which 93.7% were c.395G>A (p.R132H). Mutations were more frequent in oligodendrogliomas (53.2%) than in astrocytic tumors (22.8%) and in sGBMs (84.2%) upon pGBMs (1.8%). There was a statistically significant correlation between mIDH1R132H antibody immunostaining and the relevant mutation c.395G>A (p.R132H) (P = 0.0001). No mutations were identified in non-glial tumors which were also negative to immunohistochemistry, with the exception of one PNET. A c.515G>T (p.R172M) mutation of the IDH2 gene was only identified in a grade II oligodendroglioma patient which was wild-type for IDH1. A direct correlation with MGMT promoter hypermethylation status and an inverse correlation with EGFR amplification was found, whereas the relationships with 1p/19q co-deletion and TP53 mutations only showed a trend toward correlation. In all gliomas, a positive correlation was found between IDH1 mutations and a young age (P = 0.0001). In contrast, a correlation with overall survival could only be obtained in low-grade gliomas. Immunohistochemistry appeared to be useful in differential diagnoses, especially toward non-tumor pathologic nervous tissue, and in recognizing infiltrating glioma cells. The mIDH1R132H antibody positivity was complementary with Cyclin D1 expression.  相似文献   

8.

Background

Diagnosis of WHO grade III anaplastic gliomas does not always correspond to its clinical outcome because of the isocitrate dehydrogenase (IDH) gene status. Anaplastic gliomas without IDH mutation result in a poor prognosis, similar to grade IV glioblastomas. However, the malignant features of anaplastic gliomas without IDH mutation are not well understood. The aim of this study was to examine anaplastic gliomas, in particular those without IDH mutation, with regard to their malignant features, recurrence patterns, and association with glioma stem cells.

Methods

We retrospectively analyzed 86 cases of WHO grade III anaplastic gliomas. Data regarding patient characteristics, recurrence pattern, and prognosis were obtained from medical records. We examined molecular alterations such as IDH mutation, 1p19q loss, TP53 mutation, MGMT promoter methylation, Ki67 labeling index, and CD133, SOX2, and NESTIN expression.

Results

Of the 86 patients with anaplastic gliomas, 58 carried IDH mutation, and 40 experienced recurrence. The first recurrence was local in 25 patients and distant in 15. Patients without IDH mutation exhibited significantly higher CD133 and SOX2 expression (P = .025 and .020, respectively) and more frequent distant recurrence than those with IDH mutation (P = .022).

Conclusions

Patients with anaplastic gliomas without IDH mutation experienced distant recurrence and exhibited glioma stem cell markers, indicating that this subset may share some malignant characteristics with glioblastomas.  相似文献   

9.

Background

The discovery of isocitrate dehydrogenase 1 and 2 gene (IDH1/2) mutations has enabled grade III glioma to be divided into mutated and wild-type IDH1/2 groups, which are known to carry different prognosis and molecular features. However, detailed subgroup analysis of grade III glioma is limited. To address this, we investigated molecular and prognostic features of grade III glioma with and without IDH1/2 mutation.

Methods

We retrospectively analyzed 115 grade III glioma patients. Clinical parameters were obtained from medical records. The mutation of IDH1/2 and TP53 was analyzed by direct sequencing. O6-methylguanine methyltransferase gene (MGMT) gene promoter methylation status was determined by methylation-specific polymerase chain reaction. Detection of chromosome copy number changes of 1p, 7p (EGFR), 9p (CDKN2A), 10q (PTEN), and 19q was carried out by multiple ligation-dependent probe amplification. Patients were divided into two groups, mutated IDH1/2 and wild-type IDH1/2, for correlation with the factors analyzed.

Results

In our series, as previously reported, IDH1/2 mutation was an independent prognostic marker for improved progression-free and overall survival (OS) (P < 0.0001 and P < 0.0001, respectively) in patients with grade III gliomas. Subgroup analysis found that incomplete resection, 7p gain, and TP53 mutation were independent prognostic factors of poor outcome in grade III glioma patients with mutated IDH1/2 (P = 0.0092, P = 0.015 and P = 0.026, respectively), while there were none in patients with wild-type IDH1/2.

Conclusions

IDH1/2 gene status was significantly associated with prognosis in grade III gliomas. Subgroup analysis found that poor prognostic factors existed even in patients with IDH1/2 mutation.  相似文献   

10.

Background

Adult pilocytic astrocytomas (PAs) are rare and have an aggressive clinical course compared with pediatric patients. Constitutive Ras/RAF/MAPK signaling appears to be an important oncogenic event in sporadic PA. We evaluated clinical data and molecular profiles of adult PAs at our institution.

Methods

We identified 127 adult PAs in our institutional database. Cases with available tissue were tested for BRAF-KIAA1549 fusion/duplication (B-K fusion) by fluorescence in situ hybridization and submitted for mutation profiling using the Sequenom mutation profiling panel. Subgroup analyses were performed based on clinical and molecular data.

Results

The majority of adult PAs are supratentorial. Twenty-two percent of cases had an initial pathologic diagnosis discordant with the diagnosis made at our institution. Recurrence was seen in 42% of cases, and 13% of patients died during follow-up. Adjuvant radiotherapy following surgical resection was associated with a statistically significant decrease in progression-free survival (P = .004). B-K fusion was identified in 20% (9 of 45) of patients but was not associated with outcome. No BRAF V600E mutations (0 of 40 tested) were found.

Conclusion

This was the largest single institution series of adult PA. A significant proportion of adult PAs follow an aggressive clinical course. Our results support a period of observation following biopsy or surgical resection. B-K fusion in adult PA does not influence outcome, and BRAF V600E mutation appears to be a very rare event. Further study of tumor biology and optimal treatment is needed, given a more aggressive clinical behavior.  相似文献   

11.
12.
Pleomorphic xanthoastrocytomas with anaplastic features (PXA-As) are rare tumors about which little is known regarding clinicopathologic and molecular features. Several studies have identified BRAF V600E mutations in PXA-As, but the percentage with mutation may differ between adult and pediatric examples, and limited information exists about immunohistochemistry for isocitrate dehydrogenase 1 (IDH1). Ten cases of adult PXA-As seen at our institution since 2000 were assessed for BRAF V600E mutation by polymerase chain reaction testing (PCR) and IDH1 by immunohistochemistry. Patients ranged in age from 18–68 years; four PXA-As affected temporal lobe and two were cystic. Four patients underwent gross total resection and 9 of 10 patients received cranial irradiation and/or adjuvant chemotherapy. Five survived less than 5 years, although 2 of 5 patients died from non-tumor causes. Four long-term survivors are alive at 7.5, 9.8, 11.4, and 11.9 years post-diagnosis. Two of four long term survivors had BRAF V600E mutation: patients were ages 18 and 28 years. A 48-year-old male without BRAF mutation survives at 9.8 years, even with thalamic location; conversely a 68-year-old female with temporal lobe tumor and BRAF mutation survived 1.9 years after diagnosis. All tumors were IDH1 immunonegative. This case series details clinicopathologic features of a subset of rare PXA-As in adults. BRAF V600E mutation was identified in 50 % of these cases.  相似文献   

13.
We screened exon 4 of the gene isocitrate dehydrogenase 1 (NADP+), soluble (IDH1) for mutations in 596 primary intracranial tumors of all major types. Codon 132 mutation was seen in 54% of astrocytomas and 65% of oligodendroglial tumors but in only 6% of glioblastomas (3% of primary and 50% of secondary glioblastomas). There were no mutations in any other type of tumor studied. While mutations in the tumor protein p53 gene (TP53) and total 1p/19q deletions were mutually exclusive, IDH1 mutations were strongly correlated with these genetic abnormalities. All four types of mutant IDH1 proteins showed decreased enzymatic activity. The data indicate that IDH1 mutation combined with either TP53 mutation or total 1p/19q loss is a frequent and early change in the majority of oligodendroglial tumors, diffuse astrocytomas, anaplastic astrocytomas, and secondary glioblastomas but not in primary glioblastomas.  相似文献   

14.
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found frequently in malignant gliomas and are likely involved in early gliomagenesis. To understand the prevalence of these mutations and their relationship to other genetic alterations and impact on prognosis for Japanese glioma patients, we analyzed 250 glioma cases. Mutations of IDH1 and IDH2 were found in 73 (29%) and 2 (1%) cases, respectively. All detected mutations were heterozygous, and most mutations were an Arg132His (G395A) substitution. IDH mutations were frequent in oligodendroglial tumors (37/52, 71%) and diffuse astrocytomas (17/29, 59%), and were less frequent in anaplastic astrocytomas (8/29, 28%) and glioblastomas (13/125, 10%). The pilocytic astrocytomas and gangliogliomas did not have either mutation. Notably, 28 of 30 oligodendroglial tumors harboring the 1p/19q co-deletion also had an IDH mutation, and these alterations were significantly correlated (P < 0.001). The association between TP53 and IDH mutation was significant in diffuse astrocytomas (P = 0.0018). MGMT promoter methylation was significantly associated with IDH mutation in grade 2 (P < 0.001) and grade 3 (P = 0.02) gliomas. IDH mutation and 1p/19q co-deletion were independent favorable prognostic factors for patients with grade 3 gliomas. For patients with grade 3 gliomas and without 1p/19q co-deletion, IDH mutation was strongly associated with increased progression-free survival (P < 0.0001) and overall survival (P < 0.0001), but no such marked correlation was observed with grade 2 gliomas or glioblastomas. Therefore, IDH mutation would be most useful when assessing prognosis of patients with grade 3 glioma with intact 1p/19q; anaplastic astrocytomas account for most of these grade 3 gliomas.  相似文献   

15.
The objective of this study was to evaluate, in a series of 43 pediatric high-grade gliomas (21 anaplastic astrocytoma WHO grade III and 22 glioblastoma WHO grade IV), the prognostic value of histological grading and expression of p53 and YKL-40. Moreover, mutational screening for TP53 and IDH1 was performed in 27 of 43 cases. The prognostic stratification for histological grading showed no difference in overall (OS) and progression-free survival (PFS) between glioblastomas and anaplastic astrocytomas. Overexpression of YKL40 was detected in 25 of 43 (58%) cases, but YKL-40 expression was not prognostic in terms of OS and PFS. p53 protein expression was observed in 13 of 43 (31%) cases but was not prognostic. TP53 mutations were detected in five of 27 (18%) cases (four glioblastomas and one anaplastic astrocytoma). Patients with TP53 mutation had a shorter median OS (9 months) and PFS (8 months) than those without mutations (OS, 17 months; PFS, 16 months), although this trend did not reach statistical significance (p = 0.07). IDH1 mutations were not detected in any of the cases analyzed. Our results suggest that in pediatric high-grade gliomas: (i) histological grading does not have strong prognostic significance, (ii) YKL-40 overexpression is less frequent than adult high-grade gliomas and does not correlate with a more aggressive behavior, (iii) TP53 mutations but not p53 expression may correlate with a more aggressive behavior, and (iv) IDH1 mutations are absent. These observations support the concept that, despite identical histological features, the biology of high-grade gliomas in children differs from that in adults, and therefore different prognostic factors are needed.  相似文献   

16.
Pleomorphic xanthoastrocytoma (PXA) is classified by the World Health Organization as a grade II astrocytic tumor with relatively favorable prognosis among gliomas. A valine-to-glutamic acid substitution at position 600 of the serine/threonine-protein kinase BRAF (BRAF V600E) mutation, which is commonly found in PXA, has recently been detected in approximately 50 % of all epithelioid glioblastoma (GBM) cases. We herein report a case of epithelioid GBM developing at the site of a left temporal PXA 13 years after the treatment of the primary tumor. The BRAF V600E mutation was detected in both tumors. These findings suggest that epithelioid GBM may arise from a PXA with a BRAF V600E mutation.  相似文献   

17.
TP53 is a pivotal gene frequently mutated in diffuse gliomas and particularly in astrocytic tumors. The majority of studies dedicated to TP53 in gliomas were focused on mutational hotspots located in exons 5–8. Recent studies have suggested that TP53 is also mutated outside the classic mutational hotspots reported in gliomas. Therefore, we have sequenced all TP53 coding exons in a retrospective series of 61 low grade gliomas (LGG) using high throughput sequencing technology. In addition, TP53 mutational status was correlated with: (i) p53 expression, (ii) tumor type, (iii) chromosome arms 1p/19q status and (iv) clinical features of patients. The cohort included 32 oligodendrogliomas (O), 21 oligoastrocytomas (M) and 8 astrocytomas (A). TP53 mutation was detected in 52.4 % (32/61) of tumors (34 % of O, 71.4 % of M and 75 % of A). All mutations (38 mutations in 32 samples) were detected in exons 4, 5, 6, 7, 8 and 10. Missense and non-missense mutations, including seven novel mutations, were detected in 42.6 and 9.8 % of tumors respectively. TP53 mutations were almost mutually exclusive with 1p/19q co-deletion and were associated with: (i) astrocytic phenotype, (ii) younger age, (iii) p53 expression. Using a threshold of 10 % p53-positive tumor cells, p53 expression is an interesting surrogate marker for missense TP53 mutations (Se = 92 %; Sp = 79.4 %) but not for non-missense mutation (18.4 % of mutations). TP53 and p53 statuses were not prognostic in LGG. In conclusion, we have identified novel TP53 mutations in LGG. TP53 mutations outside exons 4–8 are rare. Although it remains imperfect, p53 expression with a threshold of 10 % is a good surrogate marker for missense TP53 mutations and appears helpful in the setting of LGG phenotype diagnosis.  相似文献   

18.
19.
We studied if combination genetic signature potentially stratifies lower-grade gliomas better than histology by investigating 214 lower-grade gliomas for IDH1/2 and TERTp mutations, 1p/19q codeletion and EGFR amplification as to their impact on prognostication. Prognostic association of grading was independent of other prognostic variables including age, histological type, IDH1/2, 1p/19q and TERTp status. No single marker, including IDH1/2, superseded grading in prognostication, indicating grading was still a very important tool. Prognosis was most favorable in 31.7% of patients with IDH1/2 mutation and either 1p/19q codeletion or TERTp mutation (IDHmut-OT), intermediate in 45.8% of patients with IDH1/2 mutation only (IDHmut) and 16.9% of patients without any of the alterations (IDHwt), and poorest in 5.6% of patients with wild-type IDH1/2 and either TERTp mutation or EGFR amplification (IDHwt-ET). Our results suggested not all IDH1/2 wild-type lower-grade gliomas are aggressive and additional biomarkers are required to identify glioblastoma-equivalent tumors. Multivariate analysis revealed independent prognostic values of grading and genetic signature. Grade II IDHwt-ET gliomas exhibited shorter survival than IDH1/2 mutated grade III gliomas, suggesting combination genetic signature potentially superseded grading in prognostication. In summary, biomarker-based stratification is useful in the diagnosis and prognostication of lower-grade gliomas, and should be used together with grading.  相似文献   

20.
Glioma accounts for 80% of all malignant brain tumours and is the most common adult primary brain tumour. Age is an important factor affecting the development of cancer, as somatic mutations accumulate with age. Here, we aimed to analyse the significance of age-dependent non-silent somatic mutations in glioma prognosis. Histological tumour grade depends on age at diagnosis in patients with IDH1, TP53, ATRX, and EGFR mutations. Age of patients with wild-type IDH1 and EGFR increased with increase in tumour grade, while the age of patients with IDH1 or EGFR mutation remained constant. However, the age of patients with EGFR mutation was higher than that of patients with IDH1 mutation. The hierarchical clustering of patients was dominantly separated by IDH1 and EGFR mutations. Furthermore, patients with IDH1 mutation were dominantly separated by TP53 and ATRX double mutation and its double wild-type counterpart. The age of patients with ATRX and TP53 mutation was lower than that of patients with wild-type ATRX and TP53. Patients with the double mutation showed poorer prognosis than those with the double wild type genotype. Unlike IDH1 mutant, IDH1 wild-type showed upregulation of expression of epithelial mesenchymal transition associated genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号