首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
油基钻屑电磁加热脱附可行性及参数优化   总被引:1,自引:0,他引:1  
油基钻屑含有大量的矿物油、乳化剂等化学药剂,成分复杂、处理困难,是页岩气等非常规油气开发的环保难题。为此,设计了一套油基钻屑电磁加热脱附处理设备,并进行了现场小试试验。通过检测电磁加热设备热脱附处理后的钻屑残渣含油率,分析试验过程中的温度变化规律,对设备处理油基钻屑的可行性进行了初步验证,并在此基础上优化了设备的主要运行参数:温度、负荷、时间。结果表明:1该电磁加热脱附处理设备对于油基钻屑具有良好的处理效果,处理后残渣含油率低于1%;2该设备适用范围广,可同时处理钻井过程中产生的编织袋、防渗塑料布等其他含油废物;3处理固控系统振动筛出渣(物料A)的最佳条件为温度375℃、进料负荷15 L/h、时间45 min;4处理固控系统离心机出渣(物料B)的最佳条件为温度350℃、进料负荷20 L/h、时间50 min;5电磁加热脱附炉内部温度的波动不受设定温度的影响,对不同负荷的物料也均能保证内部温度的稳定,具有稳定的控制温度能力和良好的保温效果。  相似文献   

2.
页岩气井使用油基钻井液钻井过程中通常会产生大量的含油钻屑,如果不能对其进行合理的处理不仅会对环境带来严重的污染,还会造成一定的资源浪费。因此,室内通过大量处理剂的优选及评价,研究出一种适用于页岩气井油基钻屑的新型化学复合清洗液体系,其主要由高效除油剂SCY-6、生物表面活性剂SWS-3和润湿反转剂STJ-2组成,室内对其处理工艺条件进行了优化评价。结果表明,当液固比为3:1,实验温度为30℃,搅拌速度为300 r/min,搅拌时间为30 min时,新型化学复合清洗液对页岩气井油基钻屑的除油效率最高,可以达到95%以上。矿场试验结果表明,3口页岩气井现场油基钻屑使用新型化学复合清洗液处理后,除油率能够达到设计要求,处理后的钻屑各种污染物指标均能满足国家标准的要求,能够实现页岩气井油基钻屑的环保无害化处理。  相似文献   

3.
随着页岩气、致密气等非常规油气的开发,因油基钻井液较水基钻井液有不可替代的优点,油基钻井液的使用规模逐渐增加,但钻井过程中产生的油基钻屑是含油危险废弃物,对环境、生态及安全均产生严重的影响。因此,研发了一种萃取剂CQJ,形成了适合于处理页岩气油基钻屑萃取工艺。该萃取剂CQJ与常规溶剂相比,具有闪点高、挥发性低、萃取效果好、毒性低的优点。对四川页岩气某区块油基钻屑进行了油基钻屑萃取处理中试,累计处理油基钻屑56 m3,取得了良好的效果。结果表明:处理后钻屑含油量平均达到0.76%,其钻屑浸出液指标符合污水排放标准;萃取剂回收率平均达到95.4%,油回收率平均达到91.5%,萃取剂可重复使用,同时回收油性能满足二次配制油基钻井液要求,实现了无害化、资源化,不造成二次污染的目标。   相似文献   

4.
使用油基钻井液必然会产生大量含油钻屑。国内外相关法律法规都对海上油田含油钻屑提出了限制排放标准。含油钻屑只有达到排放标准方可排放入海,若达不到排放标准则需运回陆上处理。昂贵的海上运输费用及陆上处理费用,使得国外钻井公司及钻井液公司纷纷研究和开发现场处理含油钻屑新技术。本文较全面地介绍国内外海上含油钻屑处理技术。  相似文献   

5.
利用微波对含油钻屑进行脱油处理,研究微波处理含油钻屑的机理及影响因素。采用单因素变量法研究了微波处理时间、微波功率、钻屑处理量和钻屑初始含液率等因素对微波处理含油钻屑效果的影响。实验结果表明,微波作用的前2 min内含油钻屑的温升最迅速,钻屑的含液率在处理的前3 min降低速率最大;微波功率与处理效果正相关,在微波功率一定的情况下,单次处理的钻屑量存在一个最佳值,针对本套装置为30 g为最佳值;通过对比实验组发现,当钻屑初始含液率为11. 3%(其中含水率为3. 7%、含油率为7. 6%)时达到最好的处理效果,通过分析处理量和钻屑初始含液率对处理效果的影响行为,可发现含油钻屑孔隙度对处理效果有较大影响。  相似文献   

6.
海上钻井含油钻屑处理技术   总被引:3,自引:0,他引:3  
使用油基钻井液必然会产生大量含油钻屑.国内外相关法律法规都对海上油田含油钻屑提出了限制排放标准.含油钻屑只有达到排放标准方可排放入海,若达不到排放标准则需运回陆上处理.昂贵的海上运输费用及陆上处理费用,使得国外钻井公司及钻井液公司纷纷研究和开发现场处理含油钻屑新技术.本文较全面地介绍国内外海上含油钻屑处理技术.  相似文献   

7.
针对页岩气开发中的水平段钻井所采用油基钻井液而产生的油基钻屑环境污染问题,研制了适用于油基钻屑处理的三相离心机,设计了转鼓液面调节装置和溢流实时调节机构两种高效分离结构,实现了改变固相含液量及在不停机情况下实时改变离心机工作特性的目的。现场试验证明,三相离心机工作性能稳定,参数调节方便,满足了油基钻屑处理的需要。  相似文献   

8.
油基钻井液是页岩气开发中最为常用的一种钻井液体系,随着页岩气勘探开发的加快发展及油基钻井液的大量使用,其产生的含油钻屑带来的环境污染也逐渐成为油气田企业的环保难题。为此,进行了现场含油钻屑组成、重金属含量和浸出液生物毒性分析,确定了含油钻屑污染特性和处理重点:针对含油钻屑污染特性,基于化学清洗法,首次引入过渡态理论,通过理论和实验分析,提出了一种新型岩屑除油机理,油滴从岩屑表面移动至油相存在着一个势能壁垒,清除岩屑中的油污需越过此势能壁垒;进而设计了含油钻屑除油配方,并通过单剂筛选、配方优化和除油条件优选,最终开发了一套含油钻屑化学清洗法除油技术。使用效果表明:在所研制的聚氧乙烯类除油剂与硫酸盐类、磺酸盐类辅助除油剂的共同作用下,势能壁垒可降低92.81%,由其处理的含油钻屑除油率达到93.02%。结论认为,该技术工艺安全简单、成本低、除油率高,可有效地解决含油钻屑的环境污染问题。  相似文献   

9.
页岩油油基钻屑随钻处理装置的研制与应用   总被引:1,自引:0,他引:1  
钻页岩油(气)井时普遍采用油基钻井液技术,在钻井过程中产生的大量含油废弃钻屑对环境污染很严重,不能随便排放,必须进行脱油处理。为此,研制了页岩油油基钻屑随钻处理装置。该装置采用油基钻井液回收和清洗分步实施工艺,可使油基钻井液的回收率超过90%,既节约成本,又清洁环保;基于生物酶的清洗剂干粉具有清洗能力强和环保等优点,经清洗剂处理后油基钻屑含油质量分数低于1%,满足现场排放环保要求;装置集成了多种新型设备,处理能力达到5 m3/h,满足油基钻屑随钻处理要求。页岩油油基钻屑随钻处理装置在胜利油田渤页2HF井等3口页岩油井中应用,均取得较好的效果。  相似文献   

10.
含油钻屑微乳状液除油剂的研制及机理   总被引:1,自引:0,他引:1  
绘制了乳化剂混合物/十四烯/氯化钠溶液的拟三相图,选择拟三相图中的一个合适的点作为含油钻屑除油剂配方,并使用粒径分析手段证明除油剂属于微乳液。然后使用现场含油钻屑,对除油剂的性能进行评价,并通过动态界面张力实验解释了除油剂除油的机理。实验结果表明:除油剂分散相粒径范围在20~60 nm,属于微乳液;当除油剂与含油钻屑质量比大于等于1:1.5时,处理后含油量可以降至1% 之下;与白油/蒸馏水界面张力相比,5号白油与除油剂之间的界面张力可以迅速降低4~5个数量级。此外,使用后的废弃除油剂和从钻屑中洗去的油均有回收利用价值。该除油剂有效解决了油基钻井液钻井过程中产生的含油钻屑数量大、处理难和排放要求日益增高的问题。  相似文献   

11.
为了解决油基钻屑热脱附过程中所存在的能耗高、过度裂解改变油品性质和二次污染等问题,采用自主研发的动态电磁加热脱附实验装置,将氧化钙(CaO)作为添加剂与油基钻屑混合进行协同热脱附处理,考察了掺混CaO对反应工况、产物分布及性质的影响,分析了冷凝油与不凝气组分的变化特征。研究结果表明:①添加5%左右的CaO,可将脱附温度降低25 ℃,使回收油和不凝气产率分别提高9.0%和127.9%,使残渣含油率降低62.5%,并且减少了冷凝水的产量;②CaO催化促进了钻屑中油分裂解断链,增加了自由基碎片重新聚合的概率,提高了C19~C22化合物的产量,在一定程度上保持了基础油的性质;③不凝气中CH4、H2含量分别增加了12.1%和18.4%,吸收固定了CO2,提高了不凝气热值。结论认为:①CaO与油基钻屑协同热脱附有利于优化反应条件,提高不凝气热值,改善回收油品性质,是节能降耗、增加产品附加值的有效途径;②CaO对油基钻屑热脱附具有催化长链烃裂解和促进结焦积碳的双重作用,因而需要结合实际情况确定最佳的掺混比例。  相似文献   

12.
油基岩屑热脱附处理技术研究进展   总被引:1,自引:0,他引:1  
近年来,油基岩屑热脱附处理技术因处理后残渣含油率可小于0.3%、油回收率高于75%等优点,在油基岩屑环保治理中得到了广泛的应用,但该技术的瓶颈问题也越来越突出,主要表现为:单套设备处置能力低、装备能耗高等。为此,基于对国内外大量文献资料、现场应用情况的调研,从油基岩屑热脱附机理、工艺及设备、主要影响因素、资源化利用等方面,系统介绍了油基岩屑热脱附处理技术的研究进展及应用情况,指出了该工艺技术存在的问题并提出了今后研究方向的建议。研究结果表明:(1)油基岩屑热脱附过程分为水分与轻质油、重质油、重质烃等不同成分分离阶段;(2)一段式和两段式工艺及设备结构主要热源有微波、电磁、天然气或柴油;(3)加热温度、加热时间对残渣含油率、回收油回收率及组分的影响最大;(4)残渣可用于制砖、筑路材料、土壤回填材料等资源化利用。结论认为:(1)油基岩屑热脱附技术存在着能耗成本偏高、装置稳定运行能力低、设备针对性不足等问题;(2)今后需加强油基岩屑预处理、热脱附工艺参数优化、传热传质优化、残渣多途径资源化利用等方面的研究。  相似文献   

13.
油基钻屑常温清洗—微生物联合处理技术   总被引:2,自引:0,他引:2  
油基钻井液因具有抑制性强、润滑性好、抗高温、抗污染、安全和钻速快等优点而被广泛应用在对非常规油气资源的勘探开发工作中,而其钻屑矿物油含量高、乳化严重、不易回收等缺点也成为环保治理的难点。为此,针对不同类型油基钻屑的物性特点,将高效清洗剂破乳清洗处理、油—水—固三相分离和石油微生物消除等3种工艺有机集成,试制出一套油基钻屑现场处理装置,形成了油基钻屑常温清洗—微生物联合处理技术。经过对4口井的油基钻屑进行放大试验,结果表明:油相回收率超过85%,清洗后废渣总石油烃含量小于2%,再经生物深度处理30天后,废渣中总石油烃含量降至0.3%以下,均达到相关标准的要求。结论认为:该联合处理技术实现了油相的回收再利用以及废渣的无害化处理,不仅有效解决了油基钻屑环保治理难题,而且还节约了钻井工程综合成本,具有良好的推广应用前景。  相似文献   

14.
页岩气井水平段钻井过程中产生大量的油基岩屑,其资源化利用的研究越来越受到人们的重视,相关实践取得了长足进展。长宁、威远页岩气开发国家示范区采用LRET技术和热解析技术开展油基岩屑处理实践,处理后的油含量小于1%(w),油回收率达到95%以上。特别是采用LRET技术处理后,浸出液的毒性、易燃性、腐蚀性、反应性和急性毒性等指标均检测合格。这为油基岩屑的安全、环保、高效处理积累了经验。  相似文献   

15.
油基钻屑环境危害大,经济价值高,处理难度大,国内外研究方向聚焦在实现油基钻屑的无害化处理、资源化利用和经济效益最大化。对油基钻屑处理技术的优缺点进行分析,优选出热脱附法是适合海上平台油基钻屑处理的技术路线。研究了热脱附技术,制定出技术路线图,并制造出第1代热脱附装置,在南海A平台开展测试,测试结果显示,单反应釜设计,处理速度慢,反应釜故障对整个系统影响大; 装置故障率高,处理效率低; 装置集成度低,安装周期长,占地面积大。针对以上问题,将装置改造升级为第2代热脱附装置:增加岩屑箱翻转架,提高上料速度; 双反应釜设计,提高处理速度; 装置集成为制氮装置撬、上料装置撬、热脱附装置撬、尾气处理撬、冷凝换热装置撬5大撬块,并在南海B平台应用。结果显示,占地面积由150 m2减小为120 m2,安装周期由7 d缩短至3 d,装置运行86 d,共处理1 116.4 t油基钻屑,平均日处理量13.0 t/d,最大日处理量21.7 t/d,处理后干渣含油率在1.3%~1.7%。  相似文献   

16.
针对油基钻井液在应用后期存在的滤饼难以清除和含油钻屑不易处理难题,基于pH刺激响应型乳化剂对乳状液类型的智能调控机制,以1-溴代长链烷烃R和二乙醇胺为原料,通过霍夫曼烷基化反应合成了一种pH响应可逆转乳化剂RE-HT,并以其为核心研制了一种抗高温可逆乳化钻井液。红外光谱分析和乳状液酸/碱触变实验结果表明,合成产物分子结构中含有pH响应性叔胺基团,可在酸/碱刺激下于油包水型乳化剂和水包油型乳化剂之间灵活切换,性能优于其余3种pH响应可逆转乳化剂。热重分析和电稳定性测试结果显示,RE-HT在空气氛围下的初始热分解温度高达257 ℃,含5%RE-HT的基础乳状液在220 ℃高温热滚后破乳电压达1098 V,表明其具有良好的热稳定性和乳化性能。研制的可逆乳化钻井液基础性能良好,在15%饱和盐水侵和15%泥页岩钻屑侵后依然可保持良好的流变与滤失性能,破乳电压高于850 V。同时酸洗后的滤饼清除率达98.98%,岩屑含油量低于1%,EC50为2.05×105 mg/L,满足钻屑排放标准,在复杂深井钻井中有较好的应用前景。   相似文献   

17.
使用油基钻井液进行钻井作业时,产生的油基钻屑含有基础油、钻井液处理剂等污染物,若其直接排放,会严重危害环境,也会造成大量油类资源的浪费。为此,使用表面活性剂水洗法处理海上钻井平台产生的油基钻屑,利用人工海水配制清洗液,得到清洗液配方为:0.7 %脂肪醇聚氧乙烯醚类非离子活性剂AEO-5+0.3%阴离子活性剂SDBS+0.15% Na5P3O10。通过室内清洗实验,探究了钻井液处理剂和钻屑矿物种类对残油率的影响。结果表明,钻井液处理剂会增大油相去除难度;钻屑矿物种类中,高岭石相比于云母石、长石、石英石清洗难度增加。最后确定最佳清洗工艺条件为:搅拌速率为500 r/min,固液比为1 ∶ 4,清洗时间为15 min,清洗温度为25 ℃。清洗结束后,钻屑残油率可降至1%以下,达到海上《海洋石油勘探开发排放限值》油基钻屑排放标准。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号