共查询到10条相似文献,搜索用时 16 毫秒
1.
Clive R. Neal Matthew D. Hacker Gregory A. Snyder Lawrence A. Taylor Yun-Gang Liu Roman A. Schmitt 《Meteoritics & planetary science》1994,29(3):334-348
Abstract— New data are reported from five previously unanalyzed Apollo 12 mare basalts that are incorporated into an evaluation of previous petrogenetic models and classification schemes for these basalts. This paper proposes a classification for Apollo 12 mare basalts on the basis of whole-rock Mg# [molar 100*(Mg/(Mg+Fe))] and Rb/Sr ratio (analyzed by isotope dilution), whereby the ilmenite, olivine, and pigeonite basalt groups are readily distinguished from each other. Scrutiny of the Apollo 12 feldspathic “suite” demonstrates that two of the three basalts previously assigned to this group (12031, 12038, 12072) can be reclassified: 12031 is a plagioclase-rich pigeonite basalt (Nyquist et al, 1979); and 12072 is an olivine basalt Only basalt 12038 stands out as a unique sample (Nyquist et al., 1981) to the Apollo 12 she, but whether this represents a single sample from another flow at the Apollo 12 site or is exotic to this site is equivocal. The question of whether the olivine and pigeonite basalt suites are co-magmatic is addressed by incompatible trace-element chemistry: the trends defined by these two suites when Co/Sm and Sm/Eu ratios are plotted against Rb/Sr ratio demonstrate that these two basaltic types cannot be co-magmatic. Crystal fractionation/accumulation paths have been calculated and show that neither the pigeonite, olivine, or ilmenite basalts are related by this process. Each suite requires a distinct and separate source region. This study also examines sample heterogeneity and the degree to which whole-rock analyses are representative, which is critical when petrogenetic interpretation is undertaken. Sample heterogeneity has been investigated petrographically (inhomogeneous mineral distribution) with consideration of duplicate analyses, and whether a specific sample (using average data) plots consistently upon a fractionation trend when a number of different compositional parameters are considered. Using these criteria, four basalts have been identified where reported analyses are not representative of the whole-rock composition: 12005, an ilmenite basalt; 12006 and 12036, olivine basalts; and 12031 previously classified as a feldspathic basalt, but reclassified as part of the pigeonite suite (Nyquist et al., 1979). 相似文献
2.
B. Montesinos John H. Thomas P. Ventura I. Mazzitelli 《Monthly notices of the Royal Astronomical Society》2001,326(3):877-884
The correlation between stellar activity, as measured by the indicator Δ R HK , and the Rossby number Ro in late-type stars is revisited in light of recent developments in solar dynamo theory. Different stellar interior models, based on both mixing-length theory and the full spectrum of turbulence, are used in order to see to what extent the correlation of activity with Rossby number is model dependent, or otherwise can be considered universal. Although we find some modest model dependence, we find that the correlation of activity with Rossby number is significantly better than with rotation period alone for all the models we consider. Dynamo theory suggests that activity should scale with the dynamo number. A current model of the solar dynamo, the so-called interface dynamo, proposes that the amplification of the toroidal magnetic field by differential rotation (the ω -effect) and the production of the poloidal magnetic field from toroidal by helical turbulence (the α -effect) take place in different, adjacent layers near the base of the convection zone. A new scale analysis based on the interface dynamo shows that the appropriate dynamo number does not depend on the Rossby number alone, but also depends on an additional dimensionless factor related to the differential rotation. This leads to a new interpretation of the correlation between activity and Rossby number, which in turn leads to some conclusions about the magnitude of differential rotation in the dynamo layers of late-type main-sequence stars. 相似文献
3.
Abstract— The discovery of 34 new stony meteorites is reported from those areas of the Nullarbor Region, Western Australia named after Mundrabilla, Forrest, Reid and Deakin sidings on the Trans Australian Railway line. The recoveries include 15 H-, and 15 L-group equilibrated (types 4–6) ordinary chondrites, two distinct H3 chondrites (Mundrabilla 003 and Forrest 003), a genomict H-group chondrite breccia (Reid 011) comprising types 3–6, and one structurally anomalous chondrite (Deakin 001). Seventy-eight distinct meteorites are now known from the region. 相似文献
4.
5.
S. Mattila W. P. S. Meikle P. Lundqvist A. Pastorello R. Kotak J. Eldridge S. Smartt A. Adamson C. L. Gerardy L. Rizzi A. W. Stephens S. D. Van Dyk 《Monthly notices of the Royal Astronomical Society》2008,389(1):141-155
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDS) produced by the interaction of the ejecta outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDS dust mass reaches a modest 3.0 × 10−4 M⊙ by day 230. While dust condensation within a CDS formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDS formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least ∼8 × 10−3 M⊙ . This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust. 相似文献
6.
7.
8.
9.
Michael Houmark-Nielsen Igor Demidov Svend Funder Kari Grsfjeld Kurt H. Kjr Eiliv Larsen Nadya Lavrova Astrid Lys Jan K. Nielsen 《Global and Planetary Change》2001,31(1-4)
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian. 相似文献