首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《铸造》2018,(11)
以ZL114A铝合金粉末为研究对象,主要研究激光选区熔化(SLM)成形主要工艺参数如激光功率、扫描速度、扫描间距、铺粉厚度等对ZL114A成形试样致密度的影响。结果表明,SLM成形ZL114A合金试样的致密度随着激光功率的增大而增大;而随着扫描速度的增大,试样的致密度则呈现先增大后减小的趋势;当激光功率为450 W,扫描速度为2 000 mm/s,扫描间距为0.09 mm,铺粉厚度为0.05 mm时,试样致密度最大可达到99.92%,其SLM沉积态合金的常温平均抗拉强度为402.7 MPa,伸长率为6.0%。进一步引入能量密度模型,综合表征能量输入与试样致密度之间的作用关系,当能量密度在35~100 J/mm~3范围内,其致密度均可达99%以上。  相似文献   

2.
为了探究不同体能量密度对SLM成形316L不锈钢耐腐蚀性的影响,采用正交试验法制备不同激光功率、扫描间距和扫描速度下的SLM 316L不锈钢成形件,利用扫描电镜和电化学试验对其微观组织和自腐蚀电位进行观察和测量。结果表明,体能量密度过大或过小时,成形件表面的气孔和孔洞等缺陷较多,自腐蚀电位减小,耐腐蚀性变差。体能量密度为44.64 J/mm-3时,SLM 316L不锈钢成形件的自腐蚀电位最高,组织表面的气孔等缺陷相对较少,耐腐蚀性最好。激光功率、扫描间距和扫描速度对SLM 316L不锈钢成形件的耐腐蚀性影响的次序为:激光功率>扫描间距和扫描速度,最佳的工艺参数组合为激光功率250 W,扫描间距0.14 mm,扫描速度800 mm/s。  相似文献   

3.
通过优化实验方法,采用在钛片上进行钛合金粉末Ti6Al4V(TC4)的选择性激光熔化(SLM)单道扫描成形正交实验,在钛基板上进行单层SLM的正交实验。将打磨过的单道钛板在金相显微镜下进行观察,运用环境扫描电镜(ESEM)对SLM的单层进行分析。结果表明,在相对较高的激光功率以及低的扫描速度下,熔道的润湿角较小,宽度较大,且具有很好的连续性,单层轨迹具有很好的搭接性,整个熔化层较为平整,球化现象较少。最终确定最优参数为扫描速度20 mm/s,扫描间距0.07 mm,铺粉厚度0.07 mm,激光功率95 W,扫描方式为跳转变向,制备出的成形面质量较好。  相似文献   

4.
为了探究选区激光熔化(SLM)成形ZL114A合金的可行性,研究SLM成形工艺参数对ZL114A铝合金的熔池形貌、表面品质和润湿角的影响。结果表明,扫描速率一定时,熔池熔宽随激光功率增大而增大;线能量密度相等,熔宽也相等。扫描速度为2 500 mm/s,375~475 W下熔道轨迹的连续性和延展性最好,球化等缺陷也较少。确定激光功率为450 W,扫描速度为2 500 mm/s,扫描间距为0.09 mm,层厚为50μm时,润湿角小,熔池高度较小,润湿性好,成形件致密度达到99.94%。  相似文献   

5.
采用正交试验,结合典型缺陷形成原因和微观组织,研究了激光选区熔化成形工艺参数(激光功率、扫描速度和扫描间距)对1Cr18Ni9Ti不锈钢致密度的影响,分析了各工艺参数对致密度的影响规律。结果表明,粉末熔化的能量输入密度主要取决于激光功率和扫描速度;在激光功率325~340 W、扫描速度1 000~1 200 mm/s、扫描间距0.12 mm的工艺参数下,SLM技术可制备致密度高于99.9%的1Cr18Ni9Ti不锈钢零件。采用优化后的SLM工艺参数成形1Cr18Ni9Ti不锈钢试棒的力学性能优于QJ501A-98标准,抗拉强度Rm≥709 MPa,屈服强度Rp0.2≥547 MPa,断后伸长率A≥41%。  相似文献   

6.
陈艳  王飞  孙靖  陈裕梁  张骏 《电焊机》2021,51(5):82-87
通过一系列实验探究难熔金属钽的激光选区熔化(Selective?Laser?Melting,SLM)成形工艺,分别选取不同激光功率、扫描速度和扫描间距,进行了单道实验、单层实验以及块体实验.结果表明,SLM成形钽最优工艺参数为激光功率300?W,扫描速度50?mm/s.针对SLM过程中钽层出现不同程度的开裂现象,从热传导及激光选区熔化过程中产生内应力累积方面对钽层开裂的原因进行了定性分析.最终成功制备得钽块体,并采用扫描电子显微镜(SEM)及X射线散射谱(EDX)对SLM成形钽的微观组织及成分分布进行表征.  相似文献   

7.
采用选区激光熔化(SLM)技术制备了AlCoCrFeNi高熵合金,研究了激光工艺参数对成形性、致密度、微观组织以及力学性能的影响。结果表明,随体能量密度的增加,致密度逐渐增加,最佳的SLM参数为激光功率50 W,扫描速度300 mm/s,扫描间距70 μm,层厚30 μm。铸态和SLM态合金是由无序BCC相(A2)和有序BCC相(B2)组成的双相体心立方结构,由于细晶强化作用,选区激光熔化试样具有比铸态试样更高的显微硬度,但是压缩屈服强度降低,原因是选区激光熔化合金中存在裂纹、孔洞等缺陷。  相似文献   

8.
基于选区激光熔化(SLM)技术熔体快速冷却的特点,通过提高Al-Si-Mg合金中Mg的含量,设计获得SLM技术专用AlSiMg3合金。系统研究了不同工艺参数和时效处理条件对SLM成形AlSiMg3合金组织和硬度的影响。结果表明,SLM成形样品均由α-Al、Si和Mg2Si相构成。高激光能量密度有利于增加粉末样品的成形性,当激光功率为160 W,扫描速度为200 mm/s时,样品具有最低孔隙率0.07%。随着激光扫描速度的增加,样品中富Si组织的比例逐渐升高,Mg元素在α-Al中固溶量逐渐增大,使得SLM成形样品的硬度逐渐升高,最大值为194±3 HV。样品经150 ℃时效处理后,由于α-Al内部纳米颗粒的析出,导致样品硬度增大,最大值为210±2 HV,远高于现有报道的SLM成形Al-Si和Al-Si-Mg铝合金。本研究报道了成形性和力学性能优异的SLM专用Al-Si-Mg合金。  相似文献   

9.
目的提高选区激光熔化(SLM)成形316L不锈钢的耐磨性和硬度。方法在能量密度为50~110 J/mm~3、扫描间距为0.04~0.12 mm范围内,改变能量密度和扫描间距两种工艺参数,采用选择性激光熔化技术(SLM)制备了12种316L不锈钢试样。通过表面粗糙度测量、孔隙率测量、销盘摩擦试验和布氏硬度试验,研究了工艺参数对SLM成形316L不锈钢试样的摩擦磨损特性和硬度的影响。结果能量密度为90 J/mm~3且扫描间距为0.12 mm时,表面粗糙度Ra最小,为5700 nm。孔隙率范围为12.35%~0.94%,扫描间距为0.12 mm的试样的孔隙率比扫描间距为0.04 mm和0.08 mm的孔隙率小。扫描间距不变时,孔隙率随能量密度增大而减小。能量密度为50 J/mm~3时,扫描间距为0.12 mm的试样的摩擦系数和磨损率比扫描间距为0.04 mm和0.08 mm的要小;能量密度不变时,扫描间距为0.12 mm的试样硬度比扫描间距为0.04mm和0.08 mm的试样高。结论改变扫描间距和能量密度会直接影响成形试样的表面粗糙度、孔隙率。研究范围内,表面粗糙度和孔隙率随扫描间距增大而减小。孔隙率与磨损量及硬度存在相关性:孔隙率越小,硬度越大,磨损率越小。因此,合理选择工艺参数可以降低孔隙率,进而提高表面质量,降低磨损率,增大硬度。  相似文献   

10.
通过对影响选区激光熔化(SLM)成形件致密度的主要因子—激光功率和扫描速度进行参数设计,引入三种能量密度模型,分析能量密度对SLM成形AlSi10Mg合金致密度的影响.结果表明:能量密度过高或过低均不能得到最佳致密度,合适的激光能量输入才能提高零件的致密度;当光斑直径为30 μm,能量密度相同时,激光功率150 W成形...  相似文献   

11.
激光选区熔化(selective laser melting, SLM)成形技术可实现形状复杂、尺寸精度高、力学性能优异零部件的直接成形,但成形工艺参数选择不当,则会在产品中引入缺陷,针对SLM成形钛合金内部缺陷的问题,研究了激光功率和扫描速度2个主要成形工艺参数对钛合金内部缺陷类型、尺寸及数量的影响,探索了缺陷的演化规律。结果表明,SLM成形钛合金内部主要有不规则形状、规则球形2种形态的缺陷。低激光功率(≤130W)、高扫描速度(≥900mm/s)区域主要为不规则形状缺陷,能量不足是导致形成该类型缺陷的主要原因;高激光功率(≥190 W)、低扫描速度(≤600 mm/s)区域主要为规则球形缺陷,能量过高导致合金元素气化是产生这类缺陷的主要原因。随着能量密度的增加,根据缺陷的演化规律绘制了SLM成形钛合金加工图,其中缺陷的演化呈现3个阶段,即不规则形状缺陷尺度逐渐降低区,微尺度不规则缺陷向微尺度规则球形缺陷过渡区和规则球形缺陷逐渐长大区。  相似文献   

12.
研究了激光功率、扫描速度和扫描间距对激光选区熔化成形AlSi10Mg合金试块致密度的影响,并采用固溶时效工艺对拉伸试样进行热处理,分析了热处理对力学性能的影响规律。结果表明,激光功率对SLM成形AlSi10Mg合金的致密度影响较大;试件的横向抗拉强度略低于纵向,但屈服强度略高,且横向伸长率显著高于纵向。热处理后的SLM成形AlSi10Mg合金构件横向与纵向力学性能相当,均优于AlSi10Mg合金典型拉伸性能。  相似文献   

13.
利用选区激光熔化(SLM)技术制备了ZL205A合金,研究了激光能量密度对SLM成形试样显微组织和力学性能的影响。结果表明,ZL205A合金粉末SLM成形试样中微观组织分为3个区域:细晶区、热影响区(HAZ)和粗晶区。在一定的范围内,随着能量密度增大,ZL205A合金粉末SLM成形试样的抗拉强度和屈服强度都先增加后减小。当能量密度为104.20J/mm3时,SLM成形ZL205A合金试样的抗拉强度、屈服强度达到最大,分别为289、230MPa,此时伸长率为4.2%。  相似文献   

14.
采用正交试验研究了激光功率(325W、300W、275 W)、扫描速度(1200 mm/s、1000 mm/s、800 mm/s)、扫描间距(0.14、0.13、0.12 mm)及铺粉层厚(0.04、0.03、0.02 mm)对激光选区熔化成形Ti-6Al-4V钛合金致密度及显微硬度的影响。结果表明:影响致密度的因素主次顺序为激光功率、扫描间距、铺粉层厚、扫描速度;而影响显微维氏硬度的因素主次顺序为铺粉层厚、扫描速度、激光功率、扫描间距。此外,在铺粉层厚为0.03 mm条件下成形的Ti-6Al-4V试块致密度整体较高。考虑工艺参数对Ti-6Al-4V合金致密度及显微维氏硬度的影响,获得最佳工艺参数组合激光功率、扫描速度、扫描间距、铺粉层厚分别为325 W、1000 mm/s、0.12 mm、0.02 mm。  相似文献   

15.
通过有限元模拟与试验测试,研究了打印参数对选区激光熔化(SLM)工艺成形AlSi10Mg合金残余应力的影响。结果表明,打印过程存在3个峰值温度;随着基板温度、激光功率、扫描速度和扫描间距的增加,成形件残余应力先减小后增大。当激光功率为450 W、扫描速度为1 100mm/s、扫描间距为70μm、基板温度为200℃时,打印件具有最小的残余应力,成形件抗拉强度为480MPa、屈服强度为310MPa、伸长率为6%。成形件组织中存在粗晶区、细晶区和热影响区3种区域,Si相呈网状结构分布。  相似文献   

16.
对钛合金TC4激光熔覆过程进行数值模拟。分析了不同激光功率、焊接速度下,激光熔覆过程中的温度场及应力场。结果表明:在本模拟研究中,当扫描速度为4 mm/s时,激光光斑半径为1.5 mm,激光功率为300 W时,熔池深度为0.6 mm,宽度为2.4 mm,成形效果好;当激光功率升至500 W,扫描速度为5 mm/s,激光光斑半径为1.5 mm时,成形效果也好。综合考虑成形质量和时间成本,后者为最优工艺参数。成形件的中心部位应力较为集中,出现缺陷的可能性较大。  相似文献   

17.
通过数值模拟根据熔池热行为变化规律对选区激光熔化工艺参数进行优化,是提高成形件质量的有效手段。为此,本论文采用ANSYS的APDL语言建立了全参数化的IN738LC合金选区激光熔化过程温度场有限元分析模型,并通过单熔道成形实验对热源模型进行校核。结果表明:随着激光功率的增加或者扫描速度的减小,粉末吸收的线性能量密度不断增加,熔池中心最高温度升高,熔融金属量增加,熔道形态由不规则断续状向规则连续长条状演化;随着扫描速度的增加或者激光功率的减小,粉末吸收的线性能量密度不断下降,熔体流动能力减弱,熔池宽度与熔化穿透深度也随之减小;有限元模拟与实验结果吻合较好,当激光功率为270 W,扫描速度为1150 mm/s时,单熔道具有连续少缺陷、规则良好的成形形貌。  相似文献   

18.
利用选区激光熔化技术(SLM)成形AlSi10Mg合金,研究工艺参数对合金组织与性能的影响.发现随着激光功率的增大,Al(111)峰向右发生了偏移,这是因为SLM成形过程中,Si原子固溶进了Al基体中,发生了晶格畸变.而较大或较小的激光功率和扫描速度对SLM成形的AlSi10Mg合金组织和性能有显著的影响.激光功率较大...  相似文献   

19.
激光选区熔化技术是制备复杂钛结构的重要加工方式,而热处理是必要的后处理手段.首先利用激光选区熔化设备打印TC4合金块体结构,以激光功率、扫描速度及扫描间距为优化对象,以致密度为优化目标开展正交试验,得到成形工艺参数对致密度的影响排序及最优工艺参数.然后对最优工艺参数下的成形样件分别进行消除应力退火处理与完全退火处理,发...  相似文献   

20.
采用激光选区熔化(SLM)工艺成形Cu6AlNiSnInCe仿金合金,研究不同SLM工艺参数组合对试样成形质量及其组织和性能的影响。结果表明,根据SLM成形试样的形貌特征可将激光功率和扫描速度的影响直观地划分为六个区域,分别是过熔区、完全熔化区、球化区、部分熔化区、严重球化区和未成形区。在完全熔化区时,激光能量密度达到156 J/mm3,仿金粉末在该参数区域完全熔化且熔池保持稳定的状态,试样密度较高、表面质量较好,表面粗糙度为9.2μm;SLM试样由基体α-Cu(Al Ni)相和弥散分布在基体中的析出δ-Cu41Sn11相组成;SLM试样的抗变形能力、显微硬度和耐腐蚀性能均优于铸造试样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号