首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms responsible for somatostatin (SRIF)-induced increases in intracellular Ca2+ concentration ([Ca2+]i) and subsequent desensitisation were studied in CHO-K1 cells expressing human sst5 receptors (CHOsst5 cells). To study the nature of the desensitisation, interactions with uridine triphosphate (UTP) were examined. SRIF (pEC50 7.10) and UTP (pEC50) 5.14) caused concentration-dependent increases in [Ca2+]i but the SRIF maximum was about 40% of that to UTP. SRIF-, but not UTP-, induced increases in [Ca2+]i were transient and abolished by pertussis toxin. SRIF and UTP caused sustained increases in Ins(1,4,5)P3 but the SRIF maximum was about 30% of that to UTP. Removal of [Ca2+]e attenuated the SRIF-induced peak rise in [Ca2+]i but had no effect on the peak increases in Ins(1,4,5)P3. UTP-induced increases in [Ca2+]i and Ins(1,4,5)P3 were attenuated in the absence of [Ca2+]e. Following pre-exposure to SRIF (1 microM) or UTP (100 microM) for 5 min, subsequent SRIF responses were desensitised. Similar results were obtained in the absence of [Ca2+]e. Pre-exposure to SRIF had no effect on subsequent responses to UTP but in the absence of [Ca2+]e, responses to UTP were attenuated. The results suggest that SRIF but not UTP-induced increases in [Ca2+]i in CHOsst5 cells are mediated by pertussis toxin sensitive G proteins and are caused by an entry of extracellular Ca2+ and release from an Ins(1,4,5)P3 sensitive Ca2+ store. Homologous or heterologous desensitisation of agonist-induced increases in [Ca2+]i could be demonstrated in the presence or absence of extracellular Ca2+ respectively, and the latter appeared to involve depletion of a common intracellular Ca2+ store.  相似文献   

2.
1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.  相似文献   

3.
1. The mechanisms of vascular tone regulation by extracellular uridine 5'-triphosphate (UTP) were investigated in bovine middle cerebral arterial strips. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and force were simultaneously monitored by use of front-surface fluorometry of fura-2. 2. In the arterial strips without endothelium, UTP (0.1 microM-1 mM) induced contraction in a concentration-dependent manner. However, when the endothelium was kept intact, cumulative application of UTP (0.1-100 microM) (and only at 1 mM) induced a modest phasic contraction in arterial strips. This endothelium-dependent reduction of the UTP-induced contraction was abolished by 100 microM N omega-nitro-L-arginine (L-NOARG) but not by 10 microM indomethacin. In the presence of intact endothelium, UTP (30 microM) induced a transient relaxation of the strips precontracted with 30 nM U-46619 (a stable analogue of thromboxane A2), which was completely inhibited by pretreatment with L-NOARG but not with indomethacin. 3. In the endothelium-denuded strips, the contractile response to UTP was abolished by desensitization to either ATP gamma S or ATP (P2U receptor agonists), but not by desensitization to alpha, beta-methylene-ATP (P2x receptor agonist) or to 2-methylthio-ATP (P2Y receptor agonist). Desensitization to UTP abolished the contractile response to ATP. 4. In the endothelium-denuded artery, a single dose application of UTP induced an initial transient, and subsequently lower but sustained increase in [Ca2+]i and force. In the absence of extracellular Ca2+, UTP induced only the initial transient increases in [Ca2+]i and force, while the sustained increases in [Ca2+]i and force were abolished. UTP (1 mM) had no effect on the basic [Ca2+]i-force relationship obtained on cumulative application of extracellular Ca2+ at steady state of 118 mM K(+)-depolarization-induced contraction. 5. We conclude that in the presence of an intact endothelium, UTP-induced relaxation of preconstricted middle cerebral artery is mainly mediated indirectly, by the production of an endothelium-derived relaxing factor, but at high doses of UTP, vascular smooth muscle contraction is mediated directly via activation of P2U purinoceptor and [Ca2+]i elevation without Ca(2+)-sensitization of the contractile apparatus. UTP may thus exert a dual regulatory effect upon cerebrovascular tone, but in cases where the endothelium is impaired, it may also act as a significant vasoconstrictor.  相似文献   

4.
When cells are exposed to certain external stimuli, arachidonic acid (AA) is released from the membrane and serves as a precursor of various types of eicosanoids. A Ca2+-regulated cytosolic phospholipase A2 (cPLA2) plays a dominant role in the release of AA. To closely examine the relation between Ca2+ response and AA release by stimulation of G protein-coupled receptors, we established several lines of Chinese hamster ovary cells expressing platelet-activating factor receptor or leukotriene B4 receptor. Measurement of intracellular Ca2+ concentration ([Ca2+]i) demonstrated that cell lines capable of releasing AA elicited a sustained [Ca2+]i increase when stimulated by agonists. The prolonged [Ca2+]i elevation is the result of Ca2+ entry, because this elevation was blocked by EGTA treatment or in the presence of Ca2+ channel blockers (SKF 96365 and methoxyverapamil). cPLA2 fused with a green fluorescent protein (cPLA2-GFP) translocated from the cytosol to the perinuclear region in response to increases in [Ca2+]i. When EGTA was added shortly after [Ca2+]i increase, the cPLA2-GFP returned to the cytosol, without liberating AA. After a prolonged [Ca2+]i increase, even by EGTA treatment, the enzyme was not readily redistributed to the cytosol. Thus, we propose that a critical time length of [Ca2+]i elevation is required for continuous membrane localization and full activation of cPLA2.  相似文献   

5.
Studies have suggested that an increase in intracellular [Ca2+] is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, and that release of Ca2+ from intracellular storage pools can be necessary to induce LTP. We investigated whether release of Ca2+ from intracellular stores also is required for the induction of LTD at Schaffer collateral-CA1 synapses in hippocampal slices. Both thapsigargin (1 microM) and cyclopiazonic acid (1 microM), compounds that deplete all intracellular Ca2+ pools by blocking LTP-dependent Ca2+ uptake into intracellular compartments, blocked the induction, but not maintenance, of LTD by low-frequency stimulation (LFS) (1 Hz/15 min) without affecting baseline synaptic transmission. Washout of the reversible inhibitor cyclopiazonic acid restored the ability to induce LTD. In contrast, thapsigargin did not block depotentiation of LTP by 1 Hz LFS, suggesting that LTP causes a reduction in the threshold [Ca2+] necessary for LTD. Selective depletion of the ryanodine receptor-gated Ca2+ pool by bath application of ryanodine (10 microM) also blocked the induction of LTD, indicating a requirement for Ca(2+)-induced Ca2+ release. Impalement of CA1 pyramidal neurons with microelectrodes containing thapsigargin (500 nM to 200 microM) prevented the induction of LTD at synapses on that neuron without blocking LTD in the rest of the slice. In contrast, similar filling of CA1 pyramidal neurons with ryanodine (2 microM to 5 mM) did not block the induction of LTD. From these data, we conclude that the induction of LTD requires release of Ca2+ both from a presynaptic ryanodine-sensitive pool and from postsynaptic (presumably IP3-gated) stores.  相似文献   

6.
PURPOSE: To characterize Ca2+ mobilization by P2 receptors in the bovine corneal endothelial cells (BCEC). METHODS: Changes in intracellular Ca2+ ([Ca2+]i) were measured by fluorescence imaging of cultured and fresh BCEC cells loaded with the Ca2+-sensitive dye Fura-PE3. Relative rates of Ca2+ influx were measured employing Mn2+ as a surrogate for Ca2+. RESULTS: Exposure of cultured cells to uridine 5'-triphosphate (UTP), 2-methyl-thio ATP (msATP) and ATP caused biphasic changes in [Ca2+]i consisting of a peak followed by a plateau phase. Based on the peak responses to 100 microM agonist, the magnitude of UTP responses were similar to that of ATP but greater than that of msATP or ADP. UTP and msATP stimulated Mn2+ influx following [Ca2+]i peak similar to that observed in response to cyclopiazonic acid (CPA), an inhibitor of ER Ca2+-ATPase. Under Ca2+-free conditions, peak responses were similar to those in the presence of external Ca2+, but reduced when the cells were pre-exposed to CPA. Reactive Blue-2 (RB2), inhibited msATP responses by 60.4 +/- 18.8% but UTP responses by only 10.6 +/- 9.5%. Repeated exposures to UTP or msATP reduced [Ca2+]i mobilization indicating homologous desensitization. Response to UTP was not affected by a prior exposure to msATP. However, response to msATP was reduced by a prior exposure to UTP indicating mixed heterologous desensitization. Fresh cells responded to UTP (50 microM) with temporal characteristics of [Ca2+]i mobilization similar to that of cultured cells. CONCLUSION: BCEC express P2 receptors belonging to the P2Y subfamily. The emptying of the IP3-sensitive stores, leading to the initial peak in [Ca2+]i response, subsequently caused capacitative Ca2+ influx leading to the onset of the plateau phase. A significant homologous desensitization to UTP and msATP, selective heterologous desensitization between UTP and msATP, and selective inhibition by RB2 indicate the coexistence of multiple P2Y receptors.  相似文献   

7.
The cytoplasmic free calcium concentration ([Ca2+]i) was measured in cultured microglial cells with the Ca2+-sensitive fluorescent dye Fura-2 using a digital imaging system. Stimulation of P2 purinergic receptors by ATP or UTP always evoked a [Ca2+]i elevation. The ATP-induced Ca2+ response involved both Ca2+ influx through ionotropic receptors and Ca2+ release from intracellular pools, whereas UTP selectively stimulated intracellular Ca2+ release. When intracellular Ca2+ release was stimulated in the absence of extracellular Ca2+, the readmission of extracellular Ca2+ caused a large rebound [Ca2+]i increase. Following this rebound, [Ca2+]i did not return to the initial resting level, but remained for long periods of time (up to 20 min), at a new, higher steady-state level. Both the amplitude of the rebound Ca2+ transient and the new plateau level strongly correlated with the degree of intracellular Ca2+ depletion, indicating the activation of a store-operated Ca2+ entry pathway. The elevated steady-state [Ca2+]i level was associated with a significant increase in the plasma membrane permeability to Ca2+, as changes in extracellular Ca2+ were reflected in almost immediate changes of [Ca2+]i. Similarly, blocking plasma-lemmal Ca2+ channels with the non-specific agonist La3+ (50 microM) caused a decrease in [Ca2+]i, despite the continuous presence of Ca2+ ions in the extracellular medium. After the establishment of the new, elevated steady-state [Ca2+]i level, stimulation of P2U metabotropic purinoreceptors did not induce a [Ca2+]i response. In addition, application of either thapsigargin (1 microM) or carbonyl cyanide chlorophenyl hydrazone (10 microM) failed to affect [Ca2+]i. We conclude that the maximal depletion of intracellular Ca2+ stores in mouse brain microglia determines the long-term activation of a plasma membrane Ca2+ entry pathway. This activation appears to be associated with a significant decrease in the capability of the intracellular Ca2+ stores to take up cytosolic Ca2+ once they have been maximally depleted.  相似文献   

8.
The pyrimidine nucleotide, uridine triphosphate (UTP), was tested with skinned skeletal muscle fibers in order to investigate the UTP-sensitive pathway of Ca2+ release from the sarcoplasmic reticulum. The presence of ryanodine (200 microM), ruthenium red (10 microM) or heparin (2.5 mg/ml) did not affect the tension elicited in the presence of UTP, demonstrating that the UTP-induced Ca2+ release involved neither ryanodine nor inositol triphosphate-sensitive channels. Drugs such as compound 48/80 or cyclopiazonic acid used to inhibit Ca2+-ATPase in its reverse function appeared to be, respectively, non-specific or without any inhibitory effect on the tension induced by UTP. Finally, the UTP-induced tension as well as the trifluoperazine-induced tension were abolished in the presence of spermidine (50 mM), supporting the hypothesis that the UTP-sensitive pathway of the SR Ca2+ release might occur through the uncoupled calcium ATPase.  相似文献   

9.
The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively. PMA at 1 microM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%. Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCbeta) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA. Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%. Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production. The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane. Western blot analysis revealed the presence of eight PKC isoforms (alpha, betaI, betaII, delta, epsilon, mu, lambda and xi) in RAW 264.7 cells and PMA was shown to induce the translocation of the alpha, betaI, betaII, delta, epsilon and mu isoforms from the cytosol to the cell membrane within 2 min. Pretreatment of cells with PMA for 2-24 h resulted in a time-dependent down-regulation of PKCalpha, betaI, betaII, and delta expression, while the levels of the other four PKC isozymes were unchanged after PMA treatment for 24 h. A decrease in the potentiation of AA release by PMA was observed, concomitant with the time-dependent down-regulation of PKC. These results indicate that PKCbeta has a crucial role in the mediation of cPLA2 activation by the phorbol ester PMA, whereas PMA utilizes PKC epsilon and/or mu to up-regulate AC activity.  相似文献   

10.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

11.
1. We have studied the effects of purinoceptor stimulation on Ca2+ signals in bovine adrenomedullary endothelial cells. [Ca2+]i was determined with the fluorescent probe fura-2 both in population samples and in single, isolated, endothelial cells in primary culture and after subculturing. 2. In endothelial cells, maintained in culture for more than one passage, several purinoceptor agonists elicited clear [Ca2+]i transient peaks that remained in the absence of extracellular Ca2+. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) were equipotently active, with EC50 values of 8.5 +/- 0.9 microM and 6.9 +/- 1.5 microM, respectively, whereas 2-methylthioadenosine 5'-triphosphate (2MeSATP), adenosine 5'-(alpha, beta-methylene)triphosphate (alpha, beta-MeATP) and adenosine(5')tetraphospho(5')adenosine (Ap4A) were basically inactive. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) was a weak agonist. The apparent potency order was UTP = ATP > ADP beta S > 2MeSATP > alpha, beta-MeATP. 3. Cross-desensitization experiments revealed that UTP or ATP, added sequentially at concentrations of maximal effect, could completely abolish the [Ca2+]i response to the second agonist. ADP beta S exerted only a partial desensitization of the response to maximal ATP, in accordance with its lower potency in raising [Ca2+]i. 4. The effect on [Ca2+]i of 100 microM ATP in subcultured cells was reduced by only 25% with 100 microM suramin pretreatment and was negligibly affected by exposure to 10 microM pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS). The concentration-effect curve for ATP was not significantly affected by PPADS, but was displaced to the right by a factor of 6.5 by 100 microM suramin. 5. In primary cultures, clear [Ca2+]i responses were elicited by 2MeSATP. Suramin totally and selectively blocked 2MeSATP responses, whereas UTP-evoked [Ca2+]i transients were mainly unaffected by suramin or PPADS. Over 80% of cells tested showed responses to both 2MeSATP and UTP. The [Ca2+]i response to UTP was not desensitized in the presence of 2MeSATP. 6. ATP and UTP stimulated the release of preloaded [3H]-arachidonic acid ([3H]-AA), both in the presence and in the absence of extracellular Ca2+, by approximately 135% with respect to basal levels. Suramin and PPADS enhanced, rather than inhibited, the [3H]-AA releasing effect of ATP by 2.5 times. Suramin also potentiated the effect of the calcium ionophore A23187. 7. These results indicate that endothelial cells from adrenomedullary capillaries co-express both P2Y- and P2U-purinoceptors. P2Y-purinoceptors are lost in culture with the first passage of the cells. The P2U-purinoceptor subtype present in these cells is insensitive to PPADS and thus similar to that found in aortic endothelial cells.  相似文献   

12.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

13.
Oscillations in cytosolic free Ca2+ concentration ([Ca2+]cyt) are an important component of Ca2+-based signal transduction pathways. This fact has led us to investigate whether oscillations in [Ca2+]cyt are involved in the response of stomatal guard cells to the plant hormone abscisic acid (ABA). We show that ABA induces oscillations in guard-cell [Ca2+]cyt. The pattern of the oscillations depended on the ABA concentration and correlated with the final stomatal aperture. We examined the mechanism by which ABA generates oscillations in guard-cell [Ca2+]cyt by using 1-(6-[17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl]aminohexyl)-1H-pyrrole-2,5-dione (U-73122), an inhibitor of phosphoinositide-specific phospholipase C (PI-PLC)-dependent processes in animals. U-73122 inhibited the hydrolysis of phosphatidylinositol 4,5-bisphosphate by a recombinant PI-PLC, isolated from a guard-cell-enriched cDNA library, in a dose-dependent manner. This result confirms that U-73122 is an inhibitor of plant PI-PLC activity. U-73122 inhibited both ABA-induced oscillations in [Ca2+]cyt and stomatal closure. In contrast, U-73122 did not inhibit external Ca2+-induced oscillations in guard-cell [Ca2+]cyt and stomatal closure. Furthermore, there was no effect of the inactive analogue 1-(6-[17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl]aminohexyl)-2,5-pyrrolidinedione on recombinant PI-PLC activity or ABA-induced and external Ca2+-induced oscillations in [Ca2+]cyt and stomatal closure. This lack of effect suggests that the effects of U-73122 in guard cells are the result of inhibition of PI-PLC and not a consequence of nonspecific effects. Taken together, our data suggest a role for PI-PLC in the generation of ABA-induced oscillations in [Ca2+]cyt and point toward the involvement of oscillations in [Ca2+]cyt in the maintenance of stomatal aperture by ABA.  相似文献   

14.
Rilmenidine, a ligand for imidazoline and alpha2-adrenergic receptors, is neuroprotective following focal cerebral ischemia. We investigated the effects of rilmenidine on cytosolic free Ca2+ concentration ([Ca2+]i) in rat astrocytes. Rilmenidine caused concentration-dependent elevation of [Ca2+]i, consisting of a transient increase (1-100 microM rilmenidine) or a transient increase followed by sustained elevation above basal levels (1-10 mM rilmenidine). A similar elevation in [Ca2+]i was induced by the imidazoline ligand cirazoline. The transient response to rilmenidine was observed in Ca2+-free medium, indicating that rilmenidine evokes release of Ca2+ from intracellular stores. However, the sustained elevation of Ca2+ was completely dependent on extracellular Ca2+, consistent with rilmenidine activating Ca2+ influx. Pretreatment with thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, abolished the response to rilmenidine, confirming the involvement of intracellular stores and suggesting that rilmenidine and thapsigargin activate a common Ca2+ influx pathway. The alpha2-adrenergic antagonist rauwolscine attenuated the increase in [Ca2+]i induced by clonidine (a selective alpha2 agonist), but not the response to rilmenidine. These results indicate that rilmenidine stimulates both Ca2+ release from intracellular stores and Ca2+ influx by a mechanism independent of alpha2-adrenergic receptors. In vivo, rilmenidine may enhance uptake of Ca2+ from the extracellular fluid by astrocytes, a process that may contribute to the neuroprotective effects of this agent.  相似文献   

15.
Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1-1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 microM thapsigargin (Tg), 10 microM 2,5-di-tert-butylhydroquinone, 1 microM ionomycin, or 100 microM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 microM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 microM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 microM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

16.
We have shown that, in murine J774 macrophages, binding of UTP to pyrimidinoceptors stimulates phosphoinositide (PI) breakdown and an increase in [Ca2+]i. In this study, UTP modulation of the expression of inducible nitric-oxide synthase (iNOS) was investigated. Although UTP alone had no effect, stimulation of J774 cells with a combination of UTP (10-300 microM) and LPS (0.1-3 microgram/ml) resulted in a potentiated increase in nitrite levels. In parallel, the amount of iNOS protein induced by LPS was also potentiated by UTP treatment. The UTP potentiating effect was attenuated by U73122, suggesting involvement of the downstream signaling pathways of phosphatidylinositide turnover. The tyrosine kinase inhibitor genistein inhibited both the LPS-induced nitrite response and the UTP potentiation. Conversely, two protein kinase C inhibitors, Ro 31-8220 and Go 6976, and a phosphatidylcholine-specific phospholipase C inhibitor, D609, inhibited LPS-stimulated nitrite induction, but did not affect the potentiating effect of UTP, which was also unaffected by pretreatment with phorbol 12-myristate 13-acetate for 8 h. Furthermore, the UTP-induced potentiation was abolished by BAPTA/AM or KN-93 (a selective inhibitor of Ca2+/calmodulin-dependent protein kinase (CaMK)). Nitrite potentiation and iNOS induction were prominent when UTP was added simultaneously with LPS, with the potentiating effect being lost when UTP was added 3 h after treatment with LPS. Pyrrolidinedithiocarbamate (3-30 microM), an inhibitor of NF-kappaB, caused a concentration-dependent reduction in the nitrite response to LPS and UTP. In electrophoretic mobility shift assays, LPS produced marked activation of NF-kappaB and AP-1, which was potentiated by UTP. LPS-induced degradation of IkappaB-alpha as well as the phosphorylation of IkappaB-alpha were also increased by UTP. Moreover, the UTP-potentiated activation of NF-kappaB and AP-1 and the degradation and phosphorylation of IkappaB-alpha were inhibited by KN-93. Taken together, these data demonstrate that nucleotides, especially UTP, can potentiate the LPS-induced activation of NF-kappaB and AP-1 and of iNOS induction via a CaMK -dependent pathway and suggest that the UTP-dependent up-regulation of iNOS may constitute a novel element in the inflammatory process.  相似文献   

17.
Inositol 1,4,5-trisphosphate (IP3) [corrected] binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at approximately 300 nM-1 microM, the open probability remained elevated (approximately 0.8) in the presence of saturating levels (10 microM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) approximately 2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 microM and Hill coefficient (Hinh) approximately 4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.  相似文献   

18.
BACKGROUND: To elucidate the molecular mechanism underlying sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediated signaling, we compared their effects with those of adenosine triphosphate (ATP) and angiotensin II (Ang II) on the cytosolic free Ca2+ concentration ([Ca2+]i), inositol 1,4, 5-trisphosphate (IP3) generation and arachidonic acid release in rat glomerular mesangial cells. METHODS: The fluorescent Ca2+ indicator, Fura-2, was used to measure the [Ca2+]i changes in cultured rat glomerular mesangial cells either in suspension or attached to the coverslips. RESULTS: SPC 5 microM, S1P 5 microM, ATP 100 microM and Ang II 90 nM all induced increases in the [Ca2+]i, and the effect showed marked homologous desensitization, while heterologous desensitization was less. After the initial exposure of the cells to SPC, the increase in [Ca2+]i induced by subsequent addition of ATP or Ang II was only reduced by about 14.3% and 4.8%, respectively. After the initial exposure to S1P, a greater reduction was seen (42. 1% and 47.7%, respectively). Both arachidonic acid release and IP3 generation were activated by all four agonists with an identical rank order of effectiveness of SPC > S1P > ATP = Ang II; both were pertussis toxin-sensitive and cholera toxin-resistant. The arachidonic acid release induced by all four agonists showed identical susceptibility to removal of extracellular Ca2+, whereas IP3 generation displayed differential extracellular Ca2+ dependence. Only SPC-induced IP3 generation was highly sensitive to extracellular Ca2+ level, and this Ca2+ dependence was abolished after pretreatment of cells with arachidonyl trifluoromethyl ketone (AACOCF3), a phospholipase A2 inhibitor. Furthermore, the Mn2+ influx was markedly greater in SPC-stimulated cells than in either control or other agonist-stimulated cells, and was decreased by prior exposure of cells to AACOCF3. After phospholipase A2 was inhibited or in the absence of extracellular Ca2+, SPC displayed identical effectiveness as S1P on desensitizing the action of ATP or Ang II on the increase in [Ca2+]i. Conclusions. Our results indicate that all four agents primarily activate phospholipase C through their receptor occupancies, but that SPC alone also induces further significant Mn2+ influx and IP3 generation attributable to its primary stimulatory effect on arachidonic acid release. Thus, the heterologous desensitization to ATP or Ang II induced by SPC was less profound than that induced by S1P, since SPC induced a Ca2+ influx.  相似文献   

19.
Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by approximately 63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 nM. Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

20.
Mastoparan, a tetradecapeptide from wasp venom, stimulated exocytosis in a concentration-dependent manner, which was enhanced by pertussis toxin pre-treatment, in the insulin secreting beta-cell line RINm5F. Mastoparan (3-20 microM) also elevated cytosolic free calcium concentration ([Ca2+]i), a rise that was not attenuated by nitrendipine. Divalent cation-free Krebs-Ringer bicarbonate (KRB) medium with 0.1 mM EGTA nullified the mastoparan-induced increase in [Ca2+]i, suggesting that the peptide increased Ca2+ influx but not through the L-type voltage-dependent Ca2+ channel. Depletion of the intracellular Ca2+ pool did not affect the mastoparan-induced elevation of [Ca2+]i. Remarkably, in divalent cation-free KRB medium with 0.1 mM EGTA and 2 microM thapsigargin in which mastoparan reduced [Ca2+]i, the mastoparan-stimulated insulin release was similar to that in normal Ca(2+)-containing KRB medium. Inhibitors of protein kinase C, such as bisindolylmaleimide, staurosporine, and 1-O-hexadecyl-2-O-methyl-rac-glycerol did not suppress the mastoparan-stimulated insulin release. Mastoparan at 10-20 microM did not increase cellular cAMP levels, nor did mastoparan at 5-10 microM affect [3H]arachidonic acid release. In conclusion, although mastoparan increased [Ca2+]i, this increase was not involved in the stimulation of insulin release. Rather, the data suggest that mastoparan directly stimulates exocytosis in a Ca(2+)-independent manner. As GTP-binding proteins (G proteins) are thought to be involved in the process of exocytosis and as mastoparan is known to exert at least some of its effects by activation of G proteins, an action of mastoparan to activate the putative stimulatory Ge (exocytosis) protein is likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号