首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Clinical neurophysiology》2019,130(1):128-137
ObjectiveHigh frequency oscillations (HFO) between 80–500 Hz are markers of epileptic areas in intracranial and maybe also scalp EEG. We investigate simultaneous recordings of scalp and intracranial EEG and hypothesize that scalp HFOs provide important additional clinical information in the presurgical setting.MethodsSpikes and HFOs were visually identified in all intracranial scalp EEG channels. Analysis of correlation of event location between intracranial and scalp EEG as well as relationship between events and the SOZ and zone of surgical removal was performed.Results24 patients could be included, 23 showed spikes and 19 HFOs on scalp recordings. In 15/19 patients highest scalp HFO rate was located over the implantation side, with 13 patients having the highest scalp and intracranial HFO rate over the same region. 17 patients underwent surgery, 7 became seizure free. Patients with poor post-operative outcome showed significantly more regions with HFO than those with seizure free outcome.ConclusionsScalp HFOs are mostly located over the SOZ. Widespread scalp HFOs are indicative of a larger epileptic network and associated with poor postsurgical outcome.SignificanceAnalysis of scalp HFO add clinically important information about the extent of epileptic areas during presurgical simultaneous scalp and intracranial EEG recordings.  相似文献   

2.
《Clinical neurophysiology》2020,131(7):1599-1609
ObjectiveDepression is widely acknowledged as the most common comorbidity of temporal lobe epilepsy (TLE), and executive control (EC) may be particularly impaired in patients with TLE with comorbid depression. The purpose of this study was to investigate brain network alterations in patients with TLE with or without depression using scalp electroencephalography (EEG), and to explore the potential mechanisms of TLE with comorbid depression.MethodsForty patients with TLE and 20 healthy controls (HC) were recruited for administered the BDI-II and HAMD-17 surveys. The patients with TLE were divided into those with depression (PDS, n = 20) and those without depression (nPDS, n = 20) according to the surveys. Neural oscillations and functional connectivity during performance of EC tasks were calculated during EEG.ResultsTheta oscillation and functional connectivity were significantly weakened in the PDS group compared to the nPDS and HC groups. Furthermore, the PDS group showed more serious EC dysfunction than nPDS group.ConclusionsOur results indicated that weakened theta oscillation and functional connectivity in the frontal lobe may be a mechanism of EC dysfunction in TLE with comorbid depression.SignificanceThe present results suggest that the alterations in frontal lobe connections may help predict the depression in patients with TLE.  相似文献   

3.
《Clinical neurophysiology》2021,132(7):1622-1635
ObjectiveTo assess whether ictal electric source imaging (ESI) on low-density scalp EEG can approximate the seizure onset zone (SOZ) location and predict surgical outcome in children with refractory epilepsy undergoing surgery.MethodsWe examined 35 children with refractory epilepsy. We dichotomized surgical outcome into seizure- and non-seizure-free. We identified ictal onsets recorded with scalp and intracranial EEG and localized them using equivalent current dipoles and standardized low-resolution magnetic tomography (sLORETA). We estimated the localization accuracy of scalp EEG as distance of scalp dipoles from intracranial dipoles. We also calculated the distances of scalp dipoles from resection, as well as their resection percentage and compared between seizure-free and non-seizure-free patients. We built receiver operating characteristic curves to test whether resection percentage predicted outcome.ResultsResection distance was lower in seizure-free patients for both dipoles (p = 0.006) and sLORETA (p = 0.04). Resection percentage predicted outcome with a sensitivity of 57.1% (95% CI, 34–78.2%), a specificity of 85.7% (95% CI, 57.2–98.2%) and an accuracy of 68.6% (95% CI, 50.7–83.5%) (p = 0.01).ConclusionIctal ESI performed on low-density scalp EEG can delineate the SOZ and predict outcome.SignificanceSuch an application may increase the number of children who are referred for epilepsy surgery and improve their outcome.  相似文献   

4.
《Clinical neurophysiology》2021,132(12):2965-2978
Objective To evaluate the accuracy of automated interictal low-density electrical source imaging (LD-ESI) to define the insular irritative zone (IZ) by comparing the simultaneous interictal ESI localization with the SEEG interictal activity.Methods Long-term simultaneous scalp electroencephalography (EEG) and stereo-EEG (SEEG) with at least one depth electrode exploring the operculo-insular region(s) were analyzed. Automated interictal ESI was performed on the scalp EEG using standardized low-resolution brain electromagnetic tomography (sLORETA) and individual head models. A two-step analysis was performed: i) sublobar concordance between cluster-based ESI localization and SEEG-based IZ; ii) time-locked ESI-/SEEG analysis. Diagnostic accuracy values were calculated using SEEG as reference standard. Subgroup analysis was carried out, based on the involvement of insular contacts in the seizure onset and patterns of insular interictal activity.Results Thirty patients were included in the study. ESI showed an overall accuracy of 53% (C.I. 29–76%). Sensitivity and specificity were calculated as 53% (C.I. 29–76%), 55% (C.I. 23–83%) respectively. Higher accuracy was found in patients with frequent and dominant interictal insular spikes.Conclusions LD-ESI defines with good accuracy the insular implication in the IZ, which is not possible with classical interictal scalp EEG interpretation.SignificanceAutomated LD-ESI may be a valuable additional tool to characterize the epileptogenic zone in epilepsies with suspected insular involvement.  相似文献   

5.
《Brain stimulation》2021,14(4):761-770
BackgroundObsessive-compulsive disorder (OCD) has consistently been linked to abnormal frontostriatal activity. The electrophysiological disruption in this circuit, however, remains to be characterized.Objective/hypothesisThe primary goal of this study was to investigate the neuronal synchronization in OCD patients. We predicted aberrant oscillatory activity in frontal regions compared to healthy control subjects, which would be alleviated by deep brain stimulation (DBS) of the nucleus accumbens (NAc).MethodsWe compared scalp EEG recordings from nine patients with OCD treated with NAc-DBS with recordings from healthy controls, matched for age and gender. Within the patient group, EEG activity was compared with DBS turned off vs. stimulation at typical clinical settings (3.5 V, frequency of stimulation 130 Hz, pulse width 60 μs). In addition, intracranial EEG was recorded directly from depth macroelectrodes in the NAc in four OCD patients.ResultsCross-frequency coupling between the phase of alpha/low beta oscillations and amplitude of high gamma was significantly increased over midline frontal and parietal electrodes in patients when stimulation was turned off, compared to controls. Critically, in patients, beta (16–25 Hz) -gamma (110–166 Hz) phase amplitude coupling source localized to the ventromedial prefrontal cortex, and was reduced when NAc-DBS was active. In contrast, intracranial EEG recordings showed no beta-gamma phase amplitude coupling. The contribution of non-sinusoidal beta waveforms to this coupling are reported.ConclusionWe reveal an increased beta-gamma phase amplitude coupling in fronto-central scalp sensors in patients suffering from OCD, compared to healthy controls, which may derive from ventromedial prefrontal regions implicated in OCD and is normalized by DBS of the nucleus accumbens. This aberrant cross-frequency coupling could represent a biomarker of OCD, as well as a target for novel therapeutic approaches.  相似文献   

6.
《Clinical neurophysiology》2021,132(8):1927-1936
ObjectiveEpilepsy surgery fails in > 30% of patients with focal cortical dysplasia (FCD). The seizure persistence after surgery can be attributed to the inability to precisely localize the tissue with an endogenous potential to generate seizures. In this study, we aimed to identify the critical components of the epileptic network that were actively involved in seizure genesis.MethodsThe directed transfer function was applied to intracranial EEG recordings and the effective connectivity was determined with a high temporal and frequency resolution. Pre-ictal network properties were compared with ictal epochs to identify regions actively generating ictal activity and discriminate them from the areas of propagation.ResultsAnalysis of 276 seizures from 30 patients revealed the existence of a seizure-related network reconfiguration in the gamma-band (25–170 Hz; p < 0.005) – ictogenic nodes. Unlike seizure onset zone, resecting the majority of ictogenic nodes correlated with favorable outcomes (p < 0.012).ConclusionThe prerequisite to successful epilepsy surgery is the accurate identification of brain areas from which seizures arise. We show that in FCD-related epilepsy, gamma-band network markers can reliably identify and distinguish ictogenic areas in macroelectrode recordings, improve intracranial EEG interpretation and better delineate the epileptogenic zone.SignificanceIctogenic nodes localize the critical parts of the epileptogenic tissue and increase the diagnostic yield of intracranial evaluation.  相似文献   

7.
《Clinical neurophysiology》2020,131(12):2861-2874
ObjectiveMonitoring of the ultra-low frequency potentials, particularly cortical spreading depression (CSD), is excluded in epilepsy monitoring due to technical barriers imposed by the scalp ultra-low frequency electroencephalogram (EEG). As a result, clinical studies of CSD have been limited to invasive EEG. Therefore, the occurrence of CSD and its interaction with epileptiform field potentials (EFP) require investigation in epilepsy monitoring.MethodsUsing a novel AC/DC-EEG approach, the occurrence of DC potentials in patients with intractable epilepsy presenting different symptoms of aura was investigated during long-term video-EEG monitoring.ResultsVarious forms of slow potentials, including simultaneous negative direct current (DC) potentials and prolonged EFP, propagated negative DC potentials, and non-propagated single negative DC potentials were recorded from the scalp of the epileptic patients. The propagated and single negative DC potentials preceded the prolonged EFP with a time lag and seizure appeared at the final shoulder of some instances of the propagated negative DC potentials. The slow potential deflections had a high amplitude and prolonged duration and propagated slowly through the brain. The high-frequency EEG was suppressed in the vicinity of the negative DC potential propagations.ConclusionsThe study is the first to report the recording of the propagated and single negative DC potentials with EFP at the scalp of patients with intractable epilepsy. The negative DC potentials preceded the prolonged EFP and may trigger seizures. The propagated and single negative DC potentials may be considered as CSD.SignificanceRecordings of CSD may serve as diagnostic and prognostic monitoring tools in epilepsy.  相似文献   

8.
《Clinical neurophysiology》2021,132(8):1966-1973
ObjectiveWe examined the feasibility of using cortico-cortical evoked potentials (CCEPs) to monitor the major cortical white matter tract involved in language, the arcuate fasciculus (AF), during surgery under general anaesthesia.MethodsWe prospectively recruited nine patients undergoing surgery for lesions in the left peri-sylvian cortex, for whom awake surgery was not indicated. High angular resolution diffusion imaging (HARDI) tractography was used to localise frontal and temporal AF terminations, which guided intraoperative cortical strip placement.ResultsCCEPs were successfully evoked in 5/9 patients, showing a positive potential (P1) at 12 ms and a negative component (N1) at 21 ms when stimulating from the frontal lobe and recording in the temporal lobe. CCEP responses peaked in the posterior middle temporal gyrus. No CCEPs were evoked when stimulating temporal sites and recording from frontal contacts.ConclusionFor the first time, we show that CCEPs can be evoked from the peri-sylvian cortices also in adult patients who are not candidates for awake procedures. Our results are akin to those described in the awake setting and suggest the recorded activity is conveyed by the arcuate fasciculus.SignificanceThis intraoperative approach may have promising implications in reducing deficits in patients that require surgery in language areas under general anesthesia.  相似文献   

9.
《Clinical neurophysiology》2020,131(2):529-541
ObjectiveSleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks’ organization.MethodsWe analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM – N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach.ResultsSleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity.In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep.ConclusionsSleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity.SignificanceWe found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.  相似文献   

10.
《Clinical neurophysiology》2021,132(12):3035-3042
ObjectiveTo determine the predictive power for seizure-freedom of 19-channels EEG, measured both before and after three months the initiation of the use of Levetiracetam (LEV), in a cohort of people after a new diagnosis of temporal-lobe epilepsy (TLE) using a machine-learning approach.MethodsTwenty-three individuals with TLE were examined. We dichotomized clinical outcome into seizure-free (SF) and non-seizure-free (NSF) after two years of LEV. EEG effective power in different frequency bands was compared using baseline EEG (T0) and the EEG after three months of LEV therapy (T1) between SF and NSF patients. Partial Least Square (PLS) analysis was used to test and validate the prediction of the model for clinical outcome.ResultsA total of 152 features were extracted from the EEG recordings. When considering only the features calculated at T1, a predictive power for seizure-freedom (AUC = 0.750) was obtained. When employing both T0 and T1 features, an AUC = 0.800 was obtained.ConclusionsThis study provides a proof-of-concept pipeline for predicting the clinical response to anti-seizure medications in people with epilepsy.SignificanceFuture studies may benefit from the pipeline proposed in this study in order to develop a model that can match each patient to the most effective anti-seizure medication.  相似文献   

11.
《Clinical neurophysiology》2021,132(9):2222-2231
ObjectiveChildhood absence epilepsy (CAE) is a disease with distinct seizure semiology and electroencephalographic (EEG) features. Differentiating ictal and subclinical generalized spikes and waves discharges (GSWDs) in the EEG is challenging, since they appear to be identical upon visual inspection. Here, spectral and functional connectivity (FC) analyses were applied to routine EEG data of CAE patients, to differentiate ictal and subclinical GSWDs.MethodsTwelve CAE patients with both ictal and subclinical GSWDs were retrospectively selected for this study. The selected EEG epochs were subjected to frequency analysis in the range of 1–30 Hz. Further, FC analysis based on the imaginary part of coherency was used to determine sensor level networks.ResultsDelta, alpha and beta band frequencies during ictal GSWDs showed significantly higher power compared to subclinical GSWDs. FC showed significant network differences for all frequency bands, demonstrating weaker connectivity between channels during ictal GSWDs.ConclusionUsing spectral and FC analyses significant differences between ictal and subclinical GSWDs in CAE patients were detected, suggesting that these features could be used for machine learning classification purposes to improve EEG monitoring.SignificanceIdentifying differences between ictal and subclinical GSWDs using routine EEG, may improve understanding of this syndrome and the management of patients with CAE.  相似文献   

12.
《Clinical neurophysiology》2020,131(12):2795-2803
ObjectiveTo assess the value of caudal EEG electrodes over cheeks and neck for high-density electric source imaging (ESI) in presurgical epilepsy evaluation, and to identify the best time point during averaged interictal epileptic discharges (IEDs) for optimal ESI accuracy.MethodsWe retrospectively examined presurgical 257-channel EEG recordings of 45 patients with pharmacoresistant focal epilepsy. By stepwise removal of cheek and neck electrodes, averaged IEDs were downsampled to 219, 204, and 156 EEG channels. Additionally, ESI at the IED’s half-rise was compared to other time points. The respective sources of maximum activity were compared to the resected brain area and postsurgical outcome.ResultsCaudal channels had disproportionately more artefacts. In 30 patients with favourable outcome, the 204-channel array yielded the most accurate results with ESI maxima < 10 mm from the resection in 67% and inside affected sublobes in 83%. Neither in temporal nor in extratemporal cases did the full 257-channel setup improve ESI accuracy. ESI was most accurate at 50% of the IED’s rising phase.ConclusionInformation from cheeks and neck electrodes did not improve high-density ESI accuracy, probably due to higher artefact load and suboptimal biophysical modelling.SignificanceVery caudal EEG electrodes should be used for ESI with caution.  相似文献   

13.
《Clinical neurophysiology》2021,132(10):2357-2364
ObjectivesTo investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimulation of either muscle or cutaneous afferents.MethodsSEPs were recorded in 6 patients suffering from Parkinson’s disease (PD) who underwent electrode implantation in the pedunculopontine (PPTg) nucleus area. We compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. Also the high-frequency oscillations (HFOs) were analysed.ResultsAfter median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). On the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stimulation of all modalities by the PPTg electrode contacts.ConclusionsStimulus processing within the cuneate nucleus depends on modality, since only the cutaneous input activates the complex intranuclear network possibly generating the scalp N18 potential.SignificanceOur results shed light on the subcortical processing of the somatosensory input of different modalities.  相似文献   

14.
《Clinical neurophysiology》2021,132(12):3197-3206
ObjectiveTo examine the individual-patient-level localization value of resting-state functional MRI (rsfMRI) metrics for the seizure onset zone (SOZ) defined by stereo-electroencephalography (SEEG) in patients with medically intractable focal epilepsies.MethodsWe retrospectively included 19 patients who underwent SEEG implantation for epilepsy presurgical evaluation. Voxel-wise whole-brain analysis was performed on 3.0 T rsfMRI to generate clusters for amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo) and degree centrality (DC), which were co-registered with the SEEG-defined SOZ to evaluate their spatial overlap. Subgroup and correlation analyses were conducted for various clinical characteristics.ResultsALFF demonstrated concordant clusters with SEEG-defined SOZ in 73.7% of patients, with 93.3% sensitivity and 77.8% PPV. The concordance rate showed no significant difference when subgrouped by lesional/non-lesional MRI, SOZ location, interictal epileptiform discharges on scalp EEG, pathology or seizure outcomes. No significant correlation was seen between ALFF concordance rate and epilepsy duration, seizure-onset age, seizure frequency or number of antiseizure medications. ReHo and DC did not achieve favorable concordance results (10.5% and 15.8%, respectively). All concordant clusters showed regional activation, representing increased neural activities.ConclusionALFF had high concordance rate with SEEG-defined SOZ at individual-patient level.SignificanceALFF activation on rsfMRI can add localizing information for the noninvasive presurgical workup of intractable focal epilepsies.  相似文献   

15.

Objective

Mesial temporal lobe epilepsy (mTLE) is the most common type of focal epilepsy, but often lacks scalp EEG correlates. We ask if hippocampal epileptiform discharges that are characteristic of mTLE are associated with small sharp spikes (SSS) recorded on scalp EEG. SSS are considered benign waveforms, so are not currently used as markers of epilepsy.

Methods

To determine if there is a relationship between SSS and hippocampal discharges, simultaneous scalp and hippocampal depth electrode EEGs were recorded from 27 patients being evaluated for possible mTLE. Scalp EEG waveforms were assessed at the time of hippocampal discharges identified on intracranial hippocampal depth electrodes.

Results

15 of 27 patients had SSS on scalp EEG that were time locked to hippocampal epileptiform discharges measured intracranially. These hippocampal spikes tended to have overlying high frequency oscillations and to co-localize with a seizure onset zone, suggesting that they were pathological discharges.

Conclusions

There is a tight coupling between a subset of pathological hippocampal discharges and SSS.

Significance

SSS can be scalp EEG markers of mTLE rather than normal EEG variants.  相似文献   

16.
《Clinical neurophysiology》2021,132(12):3084-3094
ObjectiveWe use co-registration of foramen-ovale and scalp-EEG to investigate network alterations in temporal-lobe epilepsy during focal seizures without (aura) or with impairment of awareness (SIA).MethodsOne aura and one SIA were selected from six patients. Temporal dynamic among 4 epochs, as well as the differences between aura and SIA, were analyzed through partial directed coherence and graph theory-based indices of centrality.ResultsRegarding the auras temporal evolution, fronto-parietal (FP) regions showed decreased connectivity with respect to the interictal period, in both epileptogenic (EH) and non-epileptogenic hemisphere (nEH). During SIAs, temporal dynamic showed more changes than auras: centrality of mesial temporal (mT) regions changes during all conditions, and nEH FP centrality showed the same dynamic trend of the aura (decreased centrality), until the last epoch, close to the impaired awareness, when showed increased centrality. Comparing SIA with aura, in proximity of impaired awareness, increased centrality was found in all the regions, except in nEH mT.ConclusionsOur findings suggested that the impairment of awareness is related to network alterations occurring first in neocortical regions and when awareness is still retained.SignificanceThe analysis of ‘hub’ alteration can represent a suitable biomarker for scalp EEG-based prediction of awareness impairment.  相似文献   

17.
《Clinical neurophysiology》2020,131(10):2393-2401
ObjectiveTo explore neurophysiological features of musicogenic epilepsy (ME), discussing experimental findings in the framework of a systematic review on ME.MethodsTwo patients with ME underwent high-density-electroencephalography (hd-EEG) while listening to ictogenic songs. In one case, musicogenic seizures were elicited. Independent component analysis (ICA) was applied to hd-EEG, and components hosting interictal and ictal elements were identified and localized. Finally, the temporal dynamics of spike-density was studied relative to seizures. All findings were compared against the results of a systematic review on ME, collecting 131 cases.ResultsInterictal spikes appeared isolated in specific fronto-temporal independent components, whose cortical generators were located in the anterior temporal and inferior frontal lobe. In the patient undergoing seizure, ictal discharge relied in the same component, with the interictal spike-density decreasing before the seizure onset.ConclusionOur study shows how ICA can isolate neurophysiological features of ictal and interictal discharges in ME, highlighting a fronto-temporal localization and a suppression of spike-density preceding the seizure onset.SignificanceWhile the localization of ME activity could indicate which aspect within the musical stimulus might trigger musicogenic seizures for each patient, the study of ME dynamics could contribute to the development of models for seizure-prediction and their validation.  相似文献   

18.
《Clinical neurophysiology》2021,132(8):1785-1789
ObjectiveTo determine whether magnetoencephalography (MEG) can identify epileptiform discharges mimicking small sharp spikes (SSSs) on scalp electroencephalography (EEG) in patients with temporal lobe epilepsy (TLE).MethodsWe retrospectively reviewed simultaneous scalp EEG and MEG recordings of 83 consecutive patients with TLE and 49 with extra-TLE (ETLE).ResultsSSSs in scalp EEG were detected in 15 (18.1%) of 83 TLE patients compared to only two (4.1%) of 49 ETLE patients (p = 0.029). Five of the 15 TLE patients had MEG spikes with concurrent SSSs in EEG, but neither of the 2 ETLE patients. Three of these 5 TLE patients had additional interictal epileptiform discharges (IEDs) in EEG and MEG. Equivalent current dipoles (ECDs) of MEG spikes with concurrent SSSs and IEDs showed no difference in temporal lobe localization and horizontal orientation, whereas ECD moments were smaller in MEG spikes with concurrent SSSs than those with IEDs.ConclusionsSSSs were more common in TLE than in ETLE. At least some morphologically diagnosed SSSs are true but low-amplitude epileptiform discharges in TLE which can be identified with simultaneous MEG.SignificanceSimultaneous MEG is useful to identify epileptiform discharges mimicking SSSs in patients with TLE.  相似文献   

19.
《Clinical neurophysiology》2021,132(3):770-781
ObjectiveNociceptive activity in some brain areas has concordantly been reported in EEG source models, such as the anterior/mid-cingulate cortex and the parasylvian area. Whereas the posterior insula has been constantly reported to be active in intracortical and fMRI studies, non-invasive EEG and MEG recordings mostly failed to detect activity in this region. This study aimed to determine an appropriate inverse modeling approach in EEG recordings to model posterior insular activity, assuming the late LEP (laser evoked potential) time window to yield a better separation from other ongoing cortical activity.MethodsIn 12 healthy volunteers, nociceptive stimuli of three intensities were applied. LEP were recorded using 32-channel EEG recordings. Source analysis was performed in specific time windows defined in the grand-average dataset. Two distinct dipole-pairs located close to the operculo-insular area were compared.ResultsOur results show that posterior insular activity yields a substantial contribution to the latest part (positive component) of the LEP.ConclusionsEven though the initial insular activity onset is in the early LEP time window, modeling the insular activity in the late LEP time window might result in better separation from other ongoing cortical activity.SignificanceModeling the late LEP activity might enable to distinguish posterior insular activity.  相似文献   

20.
《Clinical neurophysiology》2019,130(5):752-758
ObjectiveTo characterize the quantitative electroencephalographic (QEEG) patterns associated with tilt-induced syncope in youth.MethodsSeveral QEEG parameters were analyzed. Data were calculated for peak or nadir changes with syncope for amplitude-EEG, fast Fourier transform (FFT) power in several frequency ranges, 8–13 Hz/1–4 Hz frequency ratio, and FFT edge.ResultsChanges in QEEG parameters were present among all patients with tilt-induced syncope (n = 76). These changes included increases in the low frequency FFT power (1–4 Hz range), decreases in the power ratio (8–13 Hz/1–4 Hz) and decreases in the FFT edge (95%, 1–18 Hz). All patients had suppression of EEG amplitudes that closely followed loss of consciousness. Asymmetry indices demonstrated cerebral hemisphere lateralization at multiple periods during the evolution of syncope, but the side of lateralization did not differ from 0.5 probability.ConclusionsQEEG parameters can be used to characterize EEG changes associated with tilt-induced, neurally-mediated syncope.SignificanceQEEG may serve as a useful tool for the study of syncope neurophysiology, and the modeling of changes with syncope may improve our understanding of other neurologic disorders caused by defects in cerebral perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号