共查询到20条相似文献,搜索用时 24 毫秒
1.
Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. 相似文献
2.
Menzella HG Reisinger SJ Welch M Kealey JT Kennedy J Reid R Tran CQ Santi DV 《Journal of industrial microbiology & biotechnology》2006,33(1):22-28
A generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked
by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors. With one correctable exception, the amino
acid substitutions required for restriction site placements were compatible with polyketide production. When expressed in
E. coli the codon-optimized synthetic gene cluster produced significantly more protein than did the wild-type sequence. Indeed, for
optimal polyketide production, PKS expression had to be down-regulated by promoter attenuation to achieve balance with expression
of the accessory proteins needed to support polyketide biosynthesis. 相似文献
3.
Murli S Kennedy J Dayem LC Carney JR Kealey JT 《Journal of industrial microbiology & biotechnology》2003,30(8):500-509
Escherichia coli is an attractive candidate as a host for polyketide production and has been engineered to produce the erythromycin precursor polyketide 6-deoxyerythronolide B (6dEB). In order to identify and optimize parameters that affect polyketide production in engineered E. coli, we first investigated the supply of the extender unit (2S)-methylmalonyl-CoA via three independent pathways. Expression of the Streptomyces coelicolor malonyl/methylmalonyl-CoA ligase (matB) pathway in E. coli together with methylmalonate feeding resulted in the accumulation of intracellular methylmalonyl-CoA to as much as 90% of the acyl-CoA pool. Surprisingly, the methylmalonyl-CoA generated from the matB pathway was not converted into 6dEB. In strains expressing either the S. coelicolor propionyl-CoA carboxylase (PCC) pathway or the Propionibacteria shermanii methylmalonyl-CoA mutase/epimerase pathway, methylmalonyl-CoA accumulated up to 30% of the total acyl-CoA pools, and 6dEB was produced; titers were fivefold higher when strains contained the PCC pathway rather than the mutase pathway. When the PCC and mutase pathways were expressed simultaneously, the PCC pathway predominated, as indicated by greater flux of 13C-propionate into 6dEB through the PCC pathway. To further optimize the E. coli production strain, we improved 6dEB titers by integrating the PCC and mutase pathways into the E. coli chromosome and by expressing the 6-deoxyerythronolide B synthase (DEBS) genes from a stable plasmid system.S. Murli and J. Kennedy contributed equally to this work 相似文献
4.
A sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain. The data showed that greater than 99.9% of DEBS is phosphopantetheinylated. The assay was also used to interrogate the extent of phosphopantetheinylation of the lovastatin nonaketide synthase (LNKS) heterologously expressed in Saccharomyces cerevisiae. The data showed that LNKS was efficiently phosphopantetheinylated in S. cerevisiae and that lack of production of the lovastatin precursor polyketide was not due to insufficient phosphopantetheinylation of the expressed synthase. 相似文献
5.
Thomas Schupp Christiane Toupet Nathalie Engel Stephen Goff 《FEMS microbiology letters》1998,159(2):201-207
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis. 相似文献
6.
7.
8.
Organization of the biosynthetic gene cluster for the polyketide macrolide mycinamicin in Micromonospora griseorubida 总被引:3,自引:0,他引:3
Mycinamicin, composed of a branched lactone and two sugars, desosamine and mycinose, at the C-5 and C-21 positions, is a 16-membered macrolide antibiotic produced by Micromonospora griseorubida A11725, which shows strong antimicrobial activity against Gram-positive bacteria. The nucleotide sequence (62 kb) of the mycinamicin biosynthetic gene cluster, in which there were 22 open reading frames (ORFs), was completely determined. All of the products from the 22 ORFs are responsible for the biosynthesis of mycinamicin II and self-protection against the compounds synthesized. Central to the cluster is a polyketide synthase locus (mycA), which encodes a seven-module system comprised of five multifunctional proteins. Immediately downstream of mycA, there is a set of genes for desosamine biosynthesis (mydA-G and mycB). Moreover, mydH, whose product is responsible for the biosynthesis of mycinose, lies between mydA and B. On the other hand, eight ORFs were detected upstream of the mycinamicin PKS gene. The myrB, mycG, and mycF genes had already been characterized by Inouye et al. The other five ORFs (mycCI, mycCII, mydI, mycE, and mycD) lie between mycA1 and mycF, and these five genes and mycF are responsible for the biosynthesis of mycinose. In the PKS gene, four regions of KS and AT domains in modules 1, 4, 5, and 6 indicated that it does not show the high GC content typical for Streptomyces genes, nor the unusual frame plot patterns for Streptomyces genes. Methylmalonyl-CoA was used as substrate in the functional units of those four modules. The relationship between the substrate and the unusual frame plot pattern of the KS and AT domains was observed in the other PKS genes, and it is suggested that the KS-AT original region was horizontally transferred into the PKS genes on the chromosomal DNA of several actinomycetes strains. 相似文献
9.
Brachmann AO Kirchner F Kegler C Kinski SC Schmitt I Bode HB 《Journal of biotechnology》2012,157(1):96-99
The production of the blue pigment indigoidine has been achieved in the entomopathogenic bacterium Photorhabdus luminescens by a promoter exchange and in Escherichia coli following heterologous expression of the biosynthesis gene indC. Moreover, genes involved in the regulation of this previously “silent” biosynthesis gene cluster have been identified in P. luminescens. 相似文献
10.
Abstract: Conjugal transfer of a series of incompatibility group P and Q plasmids has been studied in the acetic acid bacterium, Gluconobacter oxydans ssp. suboxydans . Transfer frequencies for the IncP/Q vectors ranged from 10−5 −10−9 exconjugants per recipient cell. It was found in the case of the IncP vector, pRK290, that Bgl II insert constructs displayed increased conjugal transfer frequencies over pRK290 per se, the parent plasmid. A gentamycin-resistant encoding pRK290 vector which was constructed offers considerable potential as a versatile gene delivery system for Gluconobacter . The lactose transposon, Tn951, was used as a model to examine heterologous gene expression in G. oxydans ssp. suboxydans . The expression level of Tn951 encoded β-galactosidase in this strain was found to be less than 5% of that found in the parent Escherichia coli strain, JC3272. 相似文献
11.
I. Fujii Y. Ono H. Tada K. Gomi Y. Ebizuka U. Sankawa 《Molecular & general genetics : MGG》1996,253(1-2):1-10
The geneCAL1 (also known asCDC43) ofSaccharomyces cerevisiae encodes the subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant enzymes encoded bycall-1, andcdc43-2 tocdc43-7, expressed in bacteria, have shown that all of the mutant enzymes possess reduced activity, and that none shows temperature-sensitive enzymatic activities. Nonetheless, all of thecall/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperature sensitive. Thecall-1 mutation, located most proximal to the C-terminus of the protein, differs from the othercdc43 mutations in several respects. An increase in soluble Rholp was observed in thecall-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype ofcall-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious incall-1 cells, but not in othercdc43 mutants or the wild-type strains. Thecdc43-5 mutant cells accumulate Cdc42p in soluble pools andcdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among thecall/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations. 相似文献
12.
13.
14.
《Journal of structural biology》2021,213(4):107802
While cryo-electron microscopy (cryo-EM) has revolutionized the structure determination of supramolecular protein complexes that are refractory to structure determination by X-ray crystallography, structure determination by cryo-EM can nonetheless be complicated by excessive conformational flexibility or structural heterogeneity resulting from weak or transient protein–protein association. Since such transient complexes are often critical for function, specialized approaches must be employed for the determination of meaningful structure–function relationships. Here, we outline examples in which transient protein–protein interactions have been visualized successfully by cryo-EM in the biosynthesis of fatty acids, polyketides, and terpenes. These studies demonstrate the utility of chemical crosslinking to stabilize transient protein–protein complexes for cryo-EM structural analysis, as well as the use of partial signal subtraction and localized reconstruction to extract useful structural information out of cryo-EM data collected from inherently dynamic systems. While these approaches do not always yield atomic resolution insights on protein–protein interactions, they nonetheless enable direct experimental observation of complexes in assembly-line biosynthesis that would otherwise be too fleeting for structural analysis. 相似文献
15.
Expression plasmids containing recombinant genes encoding three His(6)-tagged versions of the enzyme, glucosamine-6-phosphate synthase from Candida albicans, were constructed and overexpressed in Escherichia coli. The gene products were purified by metal-affinity chromatography to near homogeneity with 77-80% yield and characterized in terms of size and enzymatic properties. Presence of oligohistidyl tags at either of two ends did not affect enzyme quarternary structure but strongly influenced its catalytic activity. The His6-N-tagged enzyme completely lost an ability of glucosamine-6-phosphate formation and amidohydrolase activity but retained the hexosephosphate-isomerising activity. On the other hand, two His6-C-tagged versions of glucosamine-6-phosphate synthase exhibited amidohydrolase activity almost equal to that of the wild-type enzyme but only 18% of its hexosephosphate-isomerising activity and about 1.5% of the synthetic activity. 相似文献
16.
17.
Perng-Kuang Chang Jeffrey W. Cary Jiujiang Yu Deepak Bhatnagar Thomas E. Cleveland 《Molecular & general genetics : MGG》1995,248(3):270-277
Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment in the transformants. The disruption was attributed to a single-crossover, homologous integration event between pXX and the recipientA. parasiticus genome at a specific locus, designatedpksA. Sequence analysis suggest thatpksA is a homolog of theAspergillus nidulans wA gene, a polyketide synthase gene involved in conidial wall pigment biosynthesis. The conserved-ketoacyl synthase, acyltransferase and acyl carrier-protein domains were present in the deduced amino acid sequence of thepksA product. No-ketoacyl reductase and enoyl reductase domains were found, suggesting thatpksA does not encode catalytic activities for processing-carbon similar to those required for long chain fatty acid synthesis. ThepksA gene is located in the aflatoxin pathway gene cluster and is linked to thenor-1 gene, an aflatoxin pathway gene required for converting norsolorinic acid to averantin. These two genes are divergently transcribed from a 1.5 kb intergenic region. We propose thatpksA is a polyketide synthase gene required for the early steps of aflatoxin biosynthesis. 相似文献
18.
Izumikawa M Shipley PR Hopke JN O'Hare T Xiang L Noel JP Moore BS 《Journal of industrial microbiology & biotechnology》2003,30(8):510-515
Sequence analysis of the metabolically rich 8.7-Mbp genome of the model actinomycete Streptomyces coelicolor A3(2) revealed three genes encoding predicted type III polyketide synthases (PKSs). We report the inactivation, expression, and characterization of the type III PKS homologous SCO1206 gene product as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Incubation of recombinant THNS with malonyl-CoA showed THN production, as demonstrated by UV and HPLC analyses. The Km value for malonyl-CoA and the kcat value for THN synthesis were determined spectrophotometrically to be 3.58±0.85 µM and 0.48±0.03 min–1, respectively. The C-terminal region of S. coelicolor THNS, which is longer than most other bacterial and plant type III PKSs, was shortened by 25 amino acid residues and the resulting mutant was shown to be slightly more active (Km=1.97±0.19 µM, kcat=0.75±0.04 min–1) than the wild-type enzyme. 相似文献
19.
20.
Abstract A genomic DNA sequence of Streptomyces strain ISP 5485 was cloned, sequenced and compared with corresponding information from nucleic acid data banks. The DNA sequence was unique, but showed homology to DNA coding for the condensing enzyme, 2-oxoacyl synthase, of the deoxyerythronolide B synthase complex (DEBS) from Saccharopolyspora erythraea NRRL 2338. A subfragment of the sequenced DNA was used to construct a gene-specific probe that formed part of the putative 2-oxoacyl synthase gene. The PCR-amplified and labelled probe was used in hybridization experiments involving 33 streptomycete strains that produced different classes of antibiotics. The probe showed widespread homology with DNA considered to be part of analogous genes within genomes of different polyketide producers. The implications of the probe homology to bacterial chromosomal DNA are discussed. 相似文献