首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

2.
Abstract— We studied the elemental and isotopic abundances of noble gases (He, Ne, Ar in most cases, and Kr, Xe also in some cases) in individual chondrules separated from six ordinary, two enstatite, and two carbonaceous chondrites. Most chondrules show detectable amounts of trapped 20Ne and 36Ar, and the ratio (36Ar/20Ne)t (from ordinary and carbonaceous chondrites) suggests that HL and Q are the two major trapped components. A different trend between (36Ar/20Ne)t and trapped 36Ar is observed for chondrules in enstatite chondrites indicating a different environment and/or mechanism for their formation compared to chondrules in ordinary and carbonaceous chondrites. We found that a chondrule from Dhajala chondrite (DH‐11) shows the presence of solar‐type noble gases, as suggested by the (36Ar/20Ne)t ratio, Ne‐isotopic composition, and excess of 4He. Cosmic‐ray exposure (CRE) ages of most chondrules are similar to their host chondrites. A few chondrules show higher CRE age compared to their host, suggesting that some chondrules and/or precursors of chondrules have received cosmic ray irradiation before accreting to their parent body. Among these chondrules, DH‐11 (with solar trapped gases) and a chondrule from Murray chondrite (MRY‐1) also have lower values of (21Ne/22Ne)c, indicative of SCR contribution. However, such evidences are sporadic and indicate that chondrule formation event may have erased such excess irradiation records by solar wind and SCR in most chondrules. These results support the nebular environment for chondrule formation.  相似文献   

3.
Abstract— Micrometeorites (MMs) currently represent the largest steady‐state mass flux of extraterrestrial matter to Earth and may have delivered a significant fraction of volatile elements and organics to the Earth's surface. Nitrogen and noble gases contents and isotopic ratios have been measured in a suite of 17 micrometeorites recovered in Antarctica (sampled in blue ice at Cap Prudhomme) and Greenland (separated from cryoconite) that have experienced variable thermal metamorphism during atmospheric entry. MMs were pyrolized using a CO2 laser and the released gases were analyzed for nitrogen and noble gas abundances and isotopic ratios by static mass spectrometry after specific purification. Noble gases are a mixture of cosmogenic, solar, atmospheric, and possibly chondritic components, with atmospheric being predominant in severely heated MMs. δ15N values vary between ?240 ± 62‰ and +206 ± 12‰, with most values being within the range of terrestrial and chondritic signatures, given the uncertainties. Crystalline MMs present very high noble gas contents up to two orders of magnitude higher than carbonaceous chondrite concentrations. In contrast, nitrogen contents between 4 ppm and 165 ppm are much lower than those of carbonaceous chondrites, evidencing either initially low N content in MMs and/or degradation of phases hosting nitrogen during atmospheric entry heating and terrestrial weathering. Assuming that the original N content of MMs was comparable to that of carbonaceous chondrites, the contribution of nitrogen delivery by these objects to the terrestrial environment would have been probably marginal from 3.8 Gyr ago to present but could have been significant (?10%) in the Hadean, and even predominant during the latest stages of terrestrial accretion.  相似文献   

4.
Oliver K. Manuel 《Icarus》1980,41(2):312-315
Isotopically anomalous xenon in chondrites is closely associated with low-Z noble gases, but there is no helium (or neon) in the noble gas component with normal xenon. The correlation of elemental and isotopic heterogeneities in meteoritic noble gases places stringent limits on the origin of isotopically anomalous elements in meteorites and on the formation of the solar system.  相似文献   

5.
Abstract— Ar‐rich noble gases, the so‐called “subsolar” noble gases, are a major component of heavy primordial noble gases in unequilibrated ordinary chondrites and some classes of anhydrous carbonaceous chondrites, whereas they are almost absent in hydrous carbonaceous chondrites that suffered extensive aqueous alteration. To understand the effects of aqueous alteration on the abundance of Ar‐rich noble gases, we performed an aqueous alteration experiments on the Ningqiang type 3 carbonaceous chondrite that consists entirely of anhydrous minerals and contains Ar‐rich noble gases. Powdered samples and deionized neutral water were kept at 200 °C for 10 and 20 days, respectively. Mineralogical analyses show that, during the 10‐day alteration, serpentine and hematite formed at the expense of olivine, low‐Ca pyroxene, and sulfide. Noble gas analyses show that the 10‐day alteration of natural Ningqiang removed 79% of the primordial 36Ar, 68% of the 84Kr, and 60% of the 132Xe, but only 45% of the 4He and 53% of the primordial 20Ne. Calculated elemental ratios of the noble gases removed during the 10‐day alteration are in the range of those of Ar‐rich noble gases. These results indicate that Ar‐rich noble gases are located in materials that are very susceptible to aqueous alteration. In contrast, heavy primordial noble gases remaining in the altered samples are close to Q gas in elemental and isotope compositions. This indicates that phase Q is much more resistant to aqueous alteration than the host phases of Ar‐rich noble gases. In the 20‐day sample, the mineralogical and noble gas signatures are basically similar to those of the 10‐day sample, indicating that the loss of Ar‐rich noble gases was completed within the 10‐day alteration. Our results suggest that almost all of the Ar‐rich noble gases were lost from primitive asteroids during early, low‐temperature aqueous alteration.  相似文献   

6.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   

7.
The isotopic compositions of noble gases in the solar wind show high enrichments of light isotopes. When corrected for mass fractionation all five noble gases there can be resolved in terms of the two primitive noble gas components that have been identified in planetary solids. Reasons are presented for assigning the fractionation to a solar process that selectively enriches lighter nuclei at the surface of the Sun. When abundances of the elements at the Sun's surface are corrected for this fractionation, it is shown that atomic abundances for major elements in the bulk Sun are (in decreasing order): Fe, Ni, O, Si, S and Mg. Solar elements at about the 1% atomic abundance level include He, C, Ne, Ca and Cr. These results suggest that fusion of hydrogen is probably not the Sun's primary energy source.  相似文献   

8.
Abstract— We measured concentrations and isotopic ratios of noble gases in enstatite (E) chondrites Allan Hills (ALH) 85119 and MacAlpine Hills (MAC) 88136. These two meteorites contain solar and cosmogenic noble gases. Based on the solar and cosmogenic noble gas compositions, we calculated heliocentric distances, parent body exposure ages, and space exposure ages of the two meteorites. The parent body exposure ages are longer than 6.7 Ma for ALH 85119 and longer than 8.7 Ma for MAC 88136. The space exposure ages are shorter than 2.2 Ma for ALH 85119 and shorter than 3.9 Ma for MAC 88136. The estimated heliocentric distances are more than 1.1 AU for ALH 85119 and 1.3 AU for MAC 88136. Derived heliocentric distances indicate the locations of parent bodies in the past when constituents of the meteorites were exposed to the Sun. From the mineralogy and chemistry of E chondrites, it is believed that E chondrites formed in regions within 1.4 AU from the Sun. The heliocentric distances of the two E chondrite parent bodies are not different from the formation regions of E chondrites. This may imply that heliocentric distances of E chondrites have been relatively constant from their formation stage to the stage of exposure to the solar wind.  相似文献   

9.
Abstract— Chondrules are generally believed to have lost most or all of their trapped noble gases during their formation. We tested this assumption by measuring He, Ne, and Ar in chondrules of the carbonaceous chondrites Allende (CV3), Leoville (CV3), Renazzo (CR2), and the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1). Additionally, metalsulfide‐rich chondrule coatings were measured that probably formed from chondrule metal. Low primordial 20Ne concentrations are present in some chondrules, while even most of them contain small amounts of primordial 36Ar. Our preferred interpretation is that‐in contrast to CAIs‐the heating of the chondrule precursor during chondrule formation was not intense enough to expel primordial noble gases quantitatively. Those chondrules containing both primordial 20Ne and 36Ar show low presolar‐diamond‐like 36Ar/20Ne ratios. In contrast, the metal‐sulfide‐rich coatings generally show higher gas concentrations and Q‐like 36Ar/20Ne ratios. We propose that during metalsilicate fractionation in the course of chondrule formation, the Ar‐carrying phase Q became enriched in the metal‐sulfide‐rich chondrule coatings. In the silicate chondrule interior, only the most stable Ne‐carrying presolar diamonds survived the melting event leading to the low observed 36Ar/20Ne ratios. The chondrules studied here do not show evidence for substantial amounts of fractionated solar‐type noble gases from a strong solar wind irradiation of the chondrule precursor material as postulated by others for the chondrules of an enstatite chondrite.  相似文献   

10.
The radiogenic and primordial noble gas content of the atmospheres of Venus, Earth, and Mars are compared with one another and with the noble gas content of other extraterrestial samples, especially meteorites. The fourfold depletion of 40Ar for Venus relative to the Earth is attributed to the outgassing rates and associated tectonics and volcanic styles for the two planets diverging significantly within the first billion or so years of their history, with the outgassing rate for Venus becoming much less than that for the Earth at subsequent times. This early divergence in the tectonic style of the two planets may be due to a corresponding early onset of the runaway greenhouse on Venus. The 16-fold depletion of 40Ar for Mars relative to the Earth may be due to a combination of a mild K depletion for Mars, a smaller fraction of its interior being outgassed, and to an early reduction in its outgassing rate. Venus has lost virtually all of its primordial He and some of its radiogenic He. The escape flux of He may have been quite substantial in Venus' early history, but much diminished at later times, with this time variation being perhaps strongly influenced by massive losses of H2 resulting from efficient H2O loss processes.Key trends in the primordial noble gas content of terrestial planetary atmospheres include (1) a several orders of magnitude decrease in 20Ne and 36Ar from Venus to Earth to Mars; (2) a nearly constant 20Ne/36Ar ratio which is comparable to that found in the more primitive carbonaceous chondrites and which is two orders of magnitude smaller than the solar ratio; (3) a sizable fractionation of Ar, Kr, and Xe from their solar ratios, although the degree of fractionation, especially for 36Ar/132Xe, seems to decrease systematically from carbonaceous chondrites to Mars to Earth to Venus; and (4) large differences in Ne and Xe isotopic ratios among Earth, meteorites, and the Sun. Explaining trends (2), (2) and (4), and (1) pose the biggest problems for the solar-wind implantation, primitive atmosphere, and late veneer hypotheses, respectively. It is suggested that the grain-accretion hypothesis can explain all four trends, although the assumptions needed to achieve this agreement are far from proven. In particular, trends (1), (2), (3), and (4) are attributed to large pressure but small temperature differences in various regions of the inner solar system at the times of noble gas incorporation by host phases; similar proportions of the host phases that incorporated most of the He and Ne on the one hand (X) and Ar, Kr, and Xe on the other hand (Q); a decrease in the degree of fractionation with increasing noble-gas partial pressure; and the presence of interstellar carriers containing isotopically anomalous noble gases.Our analysis also suggests that primordial noble gases were incorporated throughout the interior of the outer terrestial planets, i.e., homogeneous accretion is favored over inhomogeneous accretion. In accord with meteorite data, we propose that carbonaceous materials were key hosts for the primordial noble gases incorporated into planets and that they provided a major source of the planets' CO2 and N2.  相似文献   

11.
Renazzo‐type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shi?r 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)‐produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He‐21Ne cosmic ray exposure (CRE) age for Shi?r 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10?8 cm3STP/g) 3.99–7.76 and 0.94–1.71, respectively. Assuming present‐day GCR flux density, the excesses translate into average precompaction 3He‐21Ne CRE ages of 3.1–27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shi?r 033 parent body in a region of the disk transparent to GCRs.  相似文献   

12.
Abstract— Nitrogen and noble gases were measured in a bulk sample and in acid‐resistant carbon‐rich residues of the ureilite Allan Hills (ALH) 78019 which has experienced low shock and is free of diamond. A small amount of amorphous carbon combusting at ≤500 °C carries most of the noble gases, while the major carbon phase consisting of large crystals of graphite combusts at ≥800 °C, and is almost noble‐gas free. Nitrogen on the other hand is present in both amorphous carbon and graphite, with different δ15N signatures of ?21%o and +19%o, respectively, distinctly different from the very light nitrogen (about ?100%o) of ureilite diamond. Amorphous carbon in ALH 78019 behaves similar to phase Q of chondrites with respect to noble gas release pattern, behavior towards oxidizing acids as well as nitrogen isotopic composition. In situ conversion of amorphous carbon or graphite to diamond through shock would require an isotopic fractionation of 8 to 12% for nitrogen favoring the light isotope, an unlikely proposition, posing a severe problem for the widely accepted shock origin of ureilite diamond.  相似文献   

13.
Abstract Solar noble gases He, Ne, Ar and Kr implanted in the H3–6 meteorite regolith breccia Acfer 111 agree in their elemental composition with that in present-day solar wind and, except for a 25% deficit of 4He, also with adopted solar abundances. The presence of such unfractionated solar gases makes Acfer 111 unique (until now). Closed system stepped etching releases noble gases that can be explained as mixtures of two distinct types of He, Ne, and Kr of isotopic compositions as they have been derived previously from meteorites and lunar samples that contain heavily fractionated solar gases. Since the same putative end members, ascribed to the solar wind (SW) and supra-thermal solar energetic particles (SEP), are also present in Acfer 111, we argue that these end members represent two truly independent components. We discount the possibility that one isotopic composition derived from the other by diffusion of the gases within, or upon their release from, their host phases. The isotopic signatures of noble gases in Acfer 111 agree with those in a lunar ilmenite of young antiquity ?100 Ma) but are in disagreement with the noble gases in lunar ilmenite 79035 of 1–2 Ga antiquity. Systematic changes are discussed of the nuclide abundance ratios as etching proceeds; they are ascribed to differences in trapping efficiency and in penetration depth of the different noble gas ion species upon their implantation.  相似文献   

14.
We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from ?0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from ?0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.  相似文献   

15.
Abstract– Coordinated in situ transmission electron microscopy and isotopic measurements of carbonaceous phases in interplanetary dust particles were performed to determine their origins. Five different types of carbonaceous materials were identified based on their morphology and texture, observed by transmission electron microscopy: globular, vesicular, dirty, spongy, and smooth. Flash heating experiments were performed to explore whether some of these morphologies are the result of atmospheric entry processes. Each of these morphologies was found to have isotopically anomalous H and N. Rare C isotopic anomalies were also observed. The isotopic and morphological properties of several of these phases, particularly the organic globules, are remarkably similar to those observed in other extraterrestrial materials including carbonaceous chondrites, comet 81P/Wild 2 particles collected by the Stardust spacecraft, and Antarctic micrometeorites, indicating that they were widespread in the early solar system. The ubiquitous nature and the isotopic anomalies of the nanoglobules and some other morphologies strongly suggest that these are very primitive phases. Given that some of the isotopic anomalies (D and 15N excesses) are indicative of mass fractionation chemical reactions in a very cold environment, and some others (13C and 15N depletions) have other origins, these carbonaceous phases come from different reservoirs. Whatever their origins, these materials probably reflect the first stages of the evolution of solar system organic matter, having originated in the outermost regions of the protosolar disk and/or interstellar cold molecular clouds.  相似文献   

16.
Abstract— In this paper, we present concentration and isotopic composition of the light noble gases He, Ne, and Ar as well as of 84Kr, 132Xe, and 129Xe in bulk samples of 33 Rumuruti (R) chondrites. Together with previously published data of six R chondrites, exposure ages are calculated and compared with those of ordinary chondrites. A number of pairings, especially between those from Northwest Africa (NWA), are suggested, so that only 23 individual falls are represented by the 39 R chondrites discussed here. Eleven of these meteorites, or almost 50%, contain solar gases and are thus regolithic breccias. This percentage is higher than that of ordinary chondrites, howardites, or aubrites. This may imply that the parent body of R chondrites has a relatively thick regolith. Concentrations of heavy noble gases, especially of Kr, are affected by the terrestrial atmospheric component, which resides in weathering products. Compared to ordinary chondrites, 129Xe/132Xe ratios of R chondrites are high.  相似文献   

17.
Abundances of Na, Al, Sc, Cr, Mn, Fe, Co and Cu have been measured by instrumental neutron activation analyses of 103 chondrites and 17 achondrites. In many cases, analyses were made of replicate samples from the same meteorite. Various sources of error in the method, including sampling errors, are discussed in detail. Examination of the patterns of coherence of the elements we have determined suggests that we can perceive effects of fractionation during condensation from the solar nebula of matter parental to chondrites. Such effects seem to be exhibited both in the abundances of lithophilic elements, perhaps being related to varied temperatures of accretion and in the abundances of those elements which would be affected by metal-silicate fractionation in the solar nebula. Atomic abundances relative to Si vary little in carbonaceous chondrites, suggesting that efficient mixing processes operated on these meteorites prior to or during their formation. We suggest that at present, no single class of carbonaceous chondrites is clearly more primitive than another. Carbonaceous and unequilibrated ordinary chondrites may represent aggregates of material accreted from the solar nebula at relatively low temperatures, as many recent discussions of these meteorites would suggest. Our data support a model of equilibration and minor mobilization of non-volatile elements within small domains of chondrites after accretion. Such a model would be consistent with the petrologic types of Van Schmus and Wood (1967). Achondrites do not exhibit simple regularities in lithophilic elemental abundances as do chondrites. Models for the origins of achondrites surely must include effects of magmatic fractionation, but we do not at present have enough information to assess the plausibility of such models.  相似文献   

18.
Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration. The Leoville and Krymka dark inclusions must have accreted from regions different from those of their respective rims and matrices and were later incorporated into their host meteorites. The noble gas data imply a heterogeneous reservoir with respect to its primordial noble gas content in the accretion region of the studied meteorites. Further studies will have to decide whether these differences are primary or evolved from an originally uniform reservoir.  相似文献   

19.
Abstract— A compilation of over 1500 Mg-isotopic analyses of Al-rich material from primitive solar system matter (meteorites) shows clearly that 26Al existed live in the early Solar System. Excesses of 26Mg observed in refractory inclusions are not the result of mixing of “fossil” interstellar 26Mg with normal solar system Mg. Some material was present that contained little or no 26Al, but it was a minor component of solar system matter in the region where CV3 and CO3 carbonaceous chondrites accreted and probably was a minor component in the accretion regions of CM chondrites as well. Data for other chondrite groups are too scanty to make similar statements. The implied long individual nebular histories of CAIs and the apparent gap of one or more million years between the start of CAI formation and the start of chondrule formation require the action of some nebular mechanism that prevented the CAIs from drifting into the Sun. Deciding whether 26Al was or was not the agent of heating that caused melting in the achondrite parent bodies hinges less on its widespread abundance in the nebula than it does on the timing of planetesimal accretion relative to the formation of the CAIs.  相似文献   

20.
Abstract– We analyzed cosmogenic He and Ne in more than 60 individual chondrules separated from small chips from the carbonaceous chondrites Allende and Murchison. The goal of this work is to search for evidence of an exposure of chondrules to energetic particles—either solar or galactic—prior to final compaction of their host chondrites and prior to the exposure of the meteoroids to galactic cosmic rays (GCR) on their way to Earth. Production rates of GCR‐produced He and Ne are calculated for each chondrule based on major element composition and a physical model of cosmogenic nuclide production in carbonaceous chondrites ( Leya and Masarik 2009 ). All studied chondrules in Allende show nominal exposure ages identical to each other within uncertainties of a few hundred thousand years. Allende chondrules therefore show no signs of a precompaction exposure. The majority of the Murchison chondrules (the “normal” chondrules) also have nominal exposure ages identical within a few hundred thousand years. However, roughly 20% of the studied Murchison chondrules (the “pre‐exposed” chondrules) contain considerably or even much higher concentrations of cosmogenic noble gases than the normal chondrules, equivalent to exposure ages to GCR at present‐day fluxes in a 4π irradiation of up to about 30 Myr. The data do not allow to firmly conclude whether these excesses were acquired by an exposure of the pre‐exposed chondrules to an early intense flux of solar energetic particles (solar cosmic rays) or rather by an exposure to GCR in the regolith of the Murchison parent asteroid. However, we prefer the latter explanation. Two major reasons are the GCR‐like isotopic composition of the excess Ne and the distribution of solar flare tracks in Murchison samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号