首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
鉴于泡沫铝材料优异的吸能特性和三明治型组合构件在强度、刚度上的优势,针对分层结构为钢板-泡沫铝芯层-钢板的100 mm厚抗爆组合板进行了装药量为1.0 kg TNT的接触爆炸试验,考察了组合板在接触爆炸条件下的变形及破坏情况,并对组合板的变形破坏过程进行了理论分析和数值模拟。研究表明,组合板承受接触爆炸荷载时,主要通过局部压缩变形和整体弯曲变形吸收耗散能量,上下面板与芯层间易发生剥离现象。钢板相同时适当增大泡沫铝芯层厚度,泡沫铝芯层相同时增加钢板厚度,均可减小组合板承受接触爆炸冲击荷载时产生的变形破坏,提高其抗爆性能。  相似文献   

2.
鉴于钢管良好的变形能力、吸能特性和夹层结构在强度、刚度上的优势,提出了分层结构为钢板-钢管芯层-钢板的三明治型抗爆组合板。对芯层钢管数量为5根、4根、3根的组合板进行了TNT装药量为1kg的接触爆炸试验,考察了各板在承受接触爆炸冲击荷载时的变形及破坏情况,并对变形破坏过程进行了理论分析和数值模拟。研究表明,钢板夹钢管组合板承受接触爆炸冲击荷载时,主要发生局部压缩变形。钢管变形是组合板耗散能量的主要途径。增加钢管数量,增大钢板厚度,增大钢管管壁厚度,均可减小组合板在接触爆炸条件下的变形破坏,提高抗接触爆炸性能。  相似文献   

3.
鉴于泡沫铝材料良好的吸能特性和三明治型组合构件在强度、刚度上的优势,通过有限元分析软件ANSYS/LS-DYNA对钢板-泡沫铝-钢板三明治型组合板进行了装药量为10.0kgTNT的非接触爆炸数值模拟,考察组合板在爆炸荷载作用下的动力响应。研究表明:钢板夹泡沫铝组合板承受爆炸冲击波荷载时,响应方式主要为组合板整体弯曲变形和泡沫铝芯层局部压缩变形,芯层压缩变形是组合板吸收耗散能量的主要途径;适当地增加泡沫铝芯层厚度和面板厚度能够提高组合板的抗爆性能,同时使组合板充分发挥耗能作用。  相似文献   

4.
鉴于泡沫铝材料良好的吸能特性和三明治型组合构件在强度、刚度上的优势,通过有限元分析软件ANSYS/LS-DYNA对钢板-泡沫铝-钢板三明治型组合板进行了装药量为10.0kgTNT的非接触爆炸数值模拟,考察组合板在爆炸荷载作用下的动力响应。研究表明:钢板夹泡沫铝组合板承受爆炸冲击波荷载时,响应方式主要为组合板整体弯曲变形和泡沫铝芯层局部压缩变形,芯层压缩变形是组合板吸收耗散能量的主要途径;适当地增加泡沫铝芯层厚度和面板厚度能够提高组合板的抗爆性能,同时使组合板充分发挥耗能作用。  相似文献   

5.
为研究泡沫铝夹芯板(简称"AFSP")的抗爆特性及其与泡沫铝板或实体金属板抗爆性能差异,对3种固支圆形板在钢管内油气混合物点火产生的爆炸荷载作用下残余变形进行试验研究。主要分析泡沫铝板在爆炸荷载下破坏特点、相同荷载条件下AFSP与实体金属板残余变形大小差异、面板材质与芯材厚度的变化对AFSP残余变形的影响等。试验结果显示:单独泡沫铝板在爆炸荷载作用下易发生整体剪切破坏;与实体板相比,芯材厚度为16 mm的AFSP在质量仅增加25.9%的条件下,残余变形减小48.5%;同载同重的钢面板较不锈钢面板AFSP的残余变形量减小30.7%;AFSP的芯材厚度由8 mm增加至16 mm,在荷载稍有增加时,残余变形反而减少了51.6%。AFSP较相同重量的实体金属板具有更好抵抗爆炸荷载的能力,AFSP的芯材厚度与面板材料是影响其抗爆性能的两个重要因素,AFSP是一种具有较好抗爆性能的复合材料。  相似文献   

6.
亓昌  杨丽君  杨姝 《振动与冲击》2013,32(13):70-75
采用动力显式有限元方法,以面比吸能和背板最大变形量为评价指标,研究了铝合金面板—梯度铝泡沫芯体—装甲钢背板夹层结构的抗爆性能。分析了芯体密度梯度排布对结构抗爆性能的影响,并与均匀密度铝泡沫夹层板进行了对比。同时,基于径向基函数建立了夹层结构抗爆性能预测响应面模型,在此基础上对夹层结构进行了多目标优化设计。结果表明,铝泡沫芯体相对密度排布顺序对夹层结构抗爆性影响明显;具有最佳芯体密度梯度排布的铝泡沫夹层结构的抗爆性能明显优于等质量的均匀密度铝泡沫夹层结构;多目标优化可进一步提高梯度铝泡沫夹层结构的综合抗爆性能。  相似文献   

7.
利用MTS和落锤试验机研究了由复合材料面板和闭孔泡沫铝芯层组成的夹芯板结构在压入和侵彻时的变形和失效行为,并通过引入无量纲参数——能量吸收效率因子,探讨了一些关键参数对夹芯板压入和侵彻性能以及能量吸收性能的影响,如冲击能量、面板厚度、芯层厚度及相对密度、压头/锤头形状和边界条件等。结果表明夹芯板的破坏主要集中在压头作用的局部区域内。夹芯板的能量吸收效率对其结构参数比较敏感,增加上层面板厚度、芯层厚度或芯层相对密度能够有效地提高夹芯板结构的能量吸收能力以及抵抗压入和侵彻的能力,而下层面板厚度的对夹心板抗侵彻性能的影响不明显。不同的压头/锤头形状和边界条件对泡沫铝夹芯板的压入和侵彻响应以及能量吸收性能影响明显。  相似文献   

8.
铝蜂窝芯具有良好的变形能力、优异的力学性能和缓冲吸能效果,在爆炸罐大当量化的应用方面展现出巨大的优势。结合单层爆炸罐试验和仿真计算结果,得出单层罐在爆炸荷载作用下的最薄弱位置,验证了数值模型的可靠性;基于此提出了一种内衬可滑动的钢板-铝蜂窝芯-钢板复合多层爆炸罐的结构设计,建立了复合多层罐的细观模型,并对其在承受爆炸荷载作用时的变形破坏过程进行了数值模拟。研究表明,单层爆炸罐的仿真计算结果与试验值基本吻合,端盖由于三波的汇聚使其承受荷载最大;铝蜂窝芯内衬的变形过程与能量的耗散同时进行,是耗能的主要途径;蜂窝芯内衬使爆炸罐获得了更好的抗爆能力,成功使1 000 g的TNT炸药量下复合罐的S_1测点的应变值小于150 g的TNT单层罐的S_1测点的应变值,该研究可为工程设计提供参考。  相似文献   

9.
钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究   总被引:9,自引:6,他引:3  
泡沫铝材料具有减振和吸收冲击能量的特点,但是单一的泡沫铝材料强度较低.为降低爆炸冲击荷载对框架底层柱的破坏,在两层钢板中间添加一层泡沫铝材料以构成多层复合抗爆结构,从而实现防爆和衰减冲击波的功能.当爆炸冲击波作用到复合结构时,泡沫铝产生塑性变形被压实,由于泡沫铝冲击波阻抗比较低,能够大大地削弱应力波的强度.在这个过程中,空气冲击波能量被减小,和单层材料相比,防爆能力得到提高.在研究过程中,主要进行了理论研究和LS-DYNA有限元动力分析,计算结果表明钢板-泡沫铝-钢板复合结构具有较好的吸能减振效果,可以运用到地面军事工程结构防爆设计中去,以提高地面军事建筑的战时生存能力.  相似文献   

10.
为研究泡沫铝夹芯结构对油气爆炸冲击波的衰减性能及影响其性能的因素,设计一种试验测试系统。在模拟坑道内,点燃混合均匀的油气混合物获取爆炸荷载,并通过调节油气浓度比例来控制爆炸荷载大小,对油气爆炸荷载作用下泡沫铝夹芯结构的防护性能进行定量分析。结果表明,当泡沫铝芯层厚度≥10 mm时,泡沫铝夹芯结构对油气爆炸冲击波的衰减效果优于实体金属结构;泡沫铝夹芯结构对油气爆炸冲击波的衰减效果随芯层厚度的增加而提升,但衰减效率呈逐渐减小趋势,试验得出的芯层最优厚度下限为16 mm。  相似文献   

11.
Experiments on curved sandwich panels under blast loading   总被引:6,自引:0,他引:6  
In this paper curved sandwich panels with two aluminium face sheets and an aluminium foam core under air blast loadings were investigated experimentally. Specimens with two values of radius of curvature and different core/face sheet configurations were tested for three blast intensities. All the four edges of the panels were fully clamped. The experiments were carried out by a four-cable ballistic pendulum with corresponding sensors. Impulse acting on the front face of the assembly, deflection history at the centre of back face sheet, and strain history at some characteristic points on the back face were obtained. Then the deformation/failure modes of specimens were classified and analysed systematically. The experimental data show that the initial curvature of a curved sandwich panel may change the deformation/collapse mode with an extended range for bending dominated deformation, which suggests that the performance of the sandwich shell structures may exceed that of both their equivalent solid counterpart and a flat sandwich plate.  相似文献   

12.
《Composites Part B》2002,33(4):315-324
Rectangular orthotropic fiber-reinforced plastic (FRP) sandwich panels were tested for buckling in uni-axial compression. The panels, with 0.32 cm (0.125 in.) face sheets and a 1.27 cm (0.5 in.) core of either balsa or linear poly(vinyl chloride) (PVC) foam, were tested in two sizes: 154×77 cm2 (72×36 in.2) and 102×77 cm2 (48×36 in.2). The sandwich panels were fabricated using the vacuum-assisted resin transfer molding process. The two short edges of the sandwich panels were clamped, while the two long edges were simply supported for testing. The clamped panel ends were potted into a steel frame. The experimental elastic buckling loads were then measured using strain gauges fixed to both sides of the panels. A total of 12 panels were tested under uni-axial compression. Bifurcation in the load versus engineering strain curve was noted in all cases. For all six sandwich panels tested using balsa core, the type of failure was easily identified as face sheet delamination followed by core shear failure. For all six PVC foam core sandwich panels tested, the type of failure consisted of core shear failure with little or no face sheet delamination. In the failed balsa core panels there was little or no evidence of balsa remaining on the FRP face sheet, however, in the PVC foam core panels there were ample amounts of foam left on the FRP face sheet. It was concluded that although the buckling loads for the foam core panels were not as high as those for the balsa core panels, PVC foam core bonding to the FRP face sheets was superior to balsa core bonding.  相似文献   

13.
为考查泡沫铝夹芯梁面板材料对其抗冲击性能的影响,运用数值模拟方法计算了相同重量下面板材料分别为304#不锈钢、工业纯铝和HRB335级钢三种泡沫铝夹芯梁在不同冲量作用下的动力响应;分析了面板材料对泡沫铝夹芯梁跨中变形及芯材压缩应变的影响.结果显示,在冲量相同的情况下,面板材料对泡沫铝夹芯梁的抗冲击性能有一定的影响;爆炸...  相似文献   

14.
Sandwich panels constructed from metallic face sheets with the core composed of an energy absorbing material, have shown potential as an effective blast resistant structure. In the present study, air-blast tests are conducted on sandwich panels composed steel face sheets with unbonded aluminium foam (Alporas, Cymat) or hexagonal honeycomb cores. Honeycomb cores with small and large aspect ratios are investigated. For all core materials, tests are conducted using two different face sheet thicknesses. The results show that face sheet thickness has a significant effect on the performance of the panels relative to an equivalent monolithic plate. The Alporas and honeycomb cores are found to give higher relative performance with a thicker face sheet. Under the majority of the loading conditions investigated, the thick core honeycomb panels show the greatest increase in blast resistance of the core materials. The Cymat core panels do not show any significant increase in performance over monolithic plates.  相似文献   

15.
《Composites Part B》2013,45(1):212-217
Sandwich structures with metallic foam core are sensitive to local indentation because of the low strength of the core and low bending stiffness of the thin face sheets. In this paper, local indentation response of sandwich panels with metallic foam core under a flat/spherical indenter was analyzed. The composite sandwich is modeled as an infinite, isotropic, plastic membrane on a rigid-plastic foundation. For simplicity, a quadratic polynomial displacement field was employed to describe the deformation of the upper face sheet. By using the principle of minimum work, explicit solutions for the indentation force and the sizes of the deformation regions were derived. The analytical results were verified by those from simulation by using the ABAQUS code, and they are in close agreement. Distribution of radial tensile strain of the upper face sheet and the ratio of energy dissipation of foam core to that of the upper face sheet were analyzed.  相似文献   

16.
Small scale explosive loading of sandwich panels with low relative density pyramidal lattice cores has been used to study the large scale bending and fracture response of a model sandwich panel system in which the core has little stretch resistance. The panels were made from a ductile stainless steel and the practical consequence of reducing the sandwich panel face sheet thickness to induce a recently predicted beneficial fluid-structure interaction (FSI) effect was investigated. The panel responses are compared to those of monolithic solid plates of equivalent areal density. The impulse imparted to the panels was varied from 1.5 to 7.6 kPa s by changing the standoff distance between the center of a spherical explosive charge and the front face of the panels. A decoupled finite element model has been used to computationally investigate the dynamic response of the panels. It predicts panel deformations well and is used to identify the deformation time sequence and the face sheet and core failure mechanisms. The study shows that efforts to use thin face sheets to exploit FSI benefits are constrained by dynamic fracture of the front face and that this failure mode is in part a consequence of the high strength of the inertially stabilized trusses. Even though the pyramidal lattice core offers little in-plane stretch resistance, and the FSI effect is negligible during loading by air, the sandwich panels are found to suffer slightly smaller back face deflections and transmit smaller vertical component forces to the supports compared to equivalent monolithic plates.  相似文献   

17.
A new type of lightweight sandwich panels consisting of vertically aligned hollow Al–Si alloy tubes as core construction and carbon fiber composite face sheets was designed. The hollow Al–Si alloy tubes were fabricated using precision casting and were bonded to the face sheets using an epoxy adhesive. The out-of-plane compression (i.e. core crushing), in-plane compression, and three-point bending response of the panels were tested until failure. The hollow Ai–Si alloy tubes core configuration show superior specific strength under crushing compared to common metallic and stochastic foam cores. Under in-plane compression and three-point bending, the buckling of face sheets and debonding of hollow cores from the face sheets were observed. Simple analytical relationships based on the concepts of mechanics of materials were provided for the compression tests, which estimate the sandwich panels’ strength with high fidelity. For three-point bending, detailed finite element analysis was used to model the response and initial failure of the sandwich panels.  相似文献   

18.
The dynamic response of honeycomb sandwich panels under aluminum foam projectile impact was investigated. The different configurations of panels were tested, and deformation/failure modes were obtained. Corresponding numerical simulations were also presented to investigate the energy absorption and deformation mechanism of sandwich panels. Results showed that the deformation/failure modes of sandwich panels were sensitive to the impact velocity and density of aluminum foam. When the panel was impacted by the aluminum foam projectile with the back mass of nylon, the “accelerating impact” stage can be produced and may lead to further compression and damage of the sandwich structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号