首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
  总被引:1,自引:0,他引:1  
Strain localization is closely associated with the stress–strain behaviour of an interphase system subject to quasi‐static direct interface shear, especially after peak stress state is reached. This behaviour is important because it is closely related to deformations experienced by geotechnical composite structures. This paper presents a study using two‐dimensional discrete element method (DEM) simulations on the strain localization of an idealized interphase system composed of densely packed spherical particles in contact with rough manufactured surfaces. The manufactured surface is made up of regular or irregular triangular asperities with varying slopes. A new simple method of strain calculation is used in this study to generate strain field inside a simulated direct interface shear box. This method accounts for particle rotation and captures strain localization features at high resolution. Results show that strain localization begins with the onset of non‐linear stress–strain behaviour. A distinct but discontinuous shear band emerges above the rough surface just before the peak stress state, which becomes more expansive and coherent with post‐peak strain softening. It is found that the shear bands developed by surfaces with smaller roughness are much thinner than those developed by surfaces with greater roughness. The maximum thickness of the intense shear zone is observed to be about 8–10 median particle diameters. The shear band orientations, which are mainly dominated by the rough boundary surface, are parallel with the zero extension direction, which are horizontally oriented. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

3.
颗粒材料数值样本的坐标排序生成技术   总被引:1,自引:0,他引:1  
楚锡华 《岩土力学》2011,32(9):2852-2855
颗粒材料离散颗粒模型的数值模拟结果与颗粒材料的数值样本密切相关,随着离散单元在颗粒材料数值模拟领域的广泛应用,颗粒材料的数值样本生成技术日益受到重视。基于RSA模型研究如何使随机生成的颗粒材料更密实,对均匀颗粒而言亦即如何在指定区域内生成更多的颗粒,讨论了4类修正方案,并建议了一种基于坐标排序的样本生成技术。研究表明,在传统的颗粒体随机生成技术基础上,通过对随机生成的x坐标序列或y坐标序列进行排序,可使生成的颗粒材料数值样本更密实。  相似文献   

4.
    
This paper presents a numerical evaluation of three non‐coaxial kinematic models by performing Distinct Element Method (DEM) simple shear tests on specimens composed of elliptical particles with different aspect ratios of 1.4 and 1.7. The models evaluated are the double‐shearing model, the double‐sliding free‐rotating model and the double slip and rotation rate model (DSR2 model). Two modes of monotonic and cyclic simple shear tests were simulated to evaluate the role played by the inherent anisotropy of the specimens. The main findings are supported by all the DEM simple shear tests, irrespective of particle shape, specimen density or shear mode. The evaluation demonstrates that the assumption in the double‐shearing model is inconsistent with the DEM results and that the energy dissipation requirements in the double‐sliding free‐rotating model appear to be too restrictive to describe the kinematic flow of elliptical particle systems. In contrast, the predictions made by the DSR2 model agree reasonably well with the DEM data, which demonstrates that the DSR2 model can effectively predict the non‐coaxial kinematic behavior of elliptical particle systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
吴祁新  杨仲轩 《岩土力学》2020,41(3):915-922
砂土的力学响应具有显著的增量非线性特征,这与离散颗粒的微观结构,即组构特性密不可分。采用应变响应包络可以较好地获得材料在不同加载方向上的增量力学响应。在物理试验中无法同时获得同一试样在不同加载方向下的宏、微观响应,故采用离散元方法,对具有不同应力历史、不同应力状态和不同级配的试样在Rendulic平面上的增量力学响应进行了系统研究和分析。离散元模拟结果表明,传统的塑性理论不能很好地描述具有复杂应力历史试样的增量力学响应,而基于颗粒间接触法向的组构增量与剪应变之间在多种不同的工况条件下均具有较强的线性相关性。当砂土的相对密实度相同时,该线性系数主要与围压的大小有关,对颗粒级配、应力历史以及应力比的变化均不敏感。由于组构的大小可以较好地量化砂土的内结构各向异性程度,进而表征应力历史的作用。上述模拟结果为在本构建模中引入组构演化机制,综合反映外荷载和内结构各向异性对砂土增量本构关系的影响提供了较好的微观物理依据。  相似文献   

6.
  总被引:1,自引:0,他引:1  
Understanding the extent to which discrete element method (DEM) simulations can capture the critical state characteristics of granular materials is important to legitimize the use of DEM in geomechanics. This paper documents a DEM study that considered the sensitivity of the critical state response characteristics to the coefficient of interparticle friction (μ) using samples with gradings that are representative of a real soil. Most of the features that are typically associated with sand behaviour at the critical state were seen to emerge from the DEM simulation data. An important deviation occurs when high μ values (μ ≥ 0.5) are used, as has been the case in a number of prior DEM studies. While there is a systematic variation in the critical state behaviour with μ for μ < 0.5, when μ ≥ 0.5, the behaviour at the critical state seems to be insensitive to further increases in μ. In contrast to observations of conventional soil response, when μ ≥ 0.5, the void ratio at the critical state initially increases with increasing mean effective stress (p′). Analysis of the DEM data and use of simple models of isolated force chains enabled some key observations. When ‘floating’ particles that do not transmit stress are eliminated from the void ratio calculation, the void ratio at the critical state decreases consistently with increasing p′. There is a transition from sliding to rolling behaviour at the contact points as μ increases. Beyond a limiting value of μ, further increases in μ do not increase the buckling resistance of individual strong force chains. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
陈龙  楚锡华  张明龙  徐远杰 《岩土力学》2013,34(11):3306-3314
基于CLoE与Gudehus-Bauer亚塑性模型数值模拟了平面应变条件下Hostun砂的应变局部化现象。从侧向压力和初始缺陷两个方面对比研究了两种模型所预测应变局部化的产生及演化模式。结果表明:(1)两种模型均能反映Hostun砂刚度随着侧向压力提高而增大的现象。(2)相比Gudehus-Bauer亚塑性模型,CLoE亚塑性模型所得出的应变局部化形态与试验结果更加一致。(3)CLoE亚塑性模型能够反映随着荷载增加,砂的体积先膨胀后缩小的特点。(4)相比Gudehus-Bauer亚塑性模型,CLoE亚塑性模型所得到的应变-应力曲线能够更明显地反映应变局部化带中单元的软化现象。(5)CLoE亚塑性模型能够更好地模拟由初始缺陷导致的不均匀应变。总的来说,所得的数值结果表明,CLoE亚塑性模型能够较好地模拟侧向压力和初始缺陷对应变局部化的影响,在模拟应变局部化现象方面较Gudehus-Bauer更有优势。然而,现有CLoE亚塑性模型无法考虑孔隙比,也未包含颗粒材料内尺度变量,有待进一步完善。  相似文献   

8.
离散单元法同拉格朗日元法及其在岩土力学中的应用   总被引:67,自引:2,他引:67  
离散单元法是一种适合于节理岩体的数值分析方法,拉格朗日元法则特点适用于解决大变形的问题。本文叙述了离散单元法和拉格朗日元法的基本原理以及有关参数的选择问题。文中还举出两种方法在岩土力学中的应用范围。  相似文献   

9.
秦建敏  迟璐璐 《岩土力学》2013,34(5):1508-1514
剪胀性是颗粒材料在加载过程中表现出来的重要变形特性。以孔隙胞元描述颗粒材料内部结构的最小单元,通过对单个孔隙胞元进行剪切受力分析,探讨了剪切过程中颗粒材料体积的改变对应力比和单个孔隙胞元形状的依赖关系,解释了排列密实的颗粒材料在剪切过程中先压缩后剪胀的微观机制。用离散元数值模拟得到了在双轴剪切过程中单个孔隙胞元形状以及孔隙胞元体积变形的演化过程。离散元数值结果表明,加载过程中孔隙胞元形状由初始各向同性到沿大主应力方向变大变长、体积变形先压缩后膨胀,并且体积变形在加载过程中存在局部化现象,体积变化大的孔隙胞元在较大变形时,排列成倾斜的窄带。综合孔隙胞元的受力分析和离散元数值结果表明,致密排列颗粒材料的剪胀性与微观尺度上孔隙胞元的几何结构及其内部的力链传递方式密切相关。  相似文献   

10.
    
Multi‐scale investigations aided by the discrete element method (DEM) play a vital role for current state‐of‐the‐art research on the elementary behaviour of granular materials. Similar to laboratory tests, there are three important aspects to be considered carefully, which are the proper stress/strain definition and measurement, the application of target loading paths and the designed experiment setup, to be addressed in the present paper. Considering the volume sensitive characteristics of granular materials, in the proposed technique, the deformation of the tested specimen is controlled and measured by deformation gradient tensor involving both the undeformed configuration and the current configuration. Definitions of Biot strain and Cauchy stress are adopted. The expressions of them in terms of contact forces and particle displacements, respectively, are derived. The boundary of the tested specimen consists of rigid massless planar units. It is suggested that the representative element uses a convex polyhedral (polygonal) shape to minimize possible boundary arching effects. General loading paths are described by directly specifying the changes in the stress/strain invariants or directions. Loading can be applied in the strain‐controlled mode by specifying the translations and rotations of the boundary units, or in the stress‐controlled mode by using a servo‐control mechanism, or in the combination of the two methods to realize mixed boundary conditions. Taking the simulation results as the natural consequences originated from a complex system, virtual experiments provide particle‐scale information database to conduct multi‐scale investigations for better understanding in granular material behaviours and possible development of the constitutive theories provided the qualitative similarity between the simulation results from virtual experiments and observations on real material behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
    
The mechanical behavior of granular materials is characterized by strong nonlinearity and irreversibility. These properties have been differently described by a variety of constitutive models. To test any constitutive model, experimental data relative to the nature of the incremental stress–strain response of the material is desirable. However, this type of laboratory data is scarce because of being expensive and difficult to obtain. The discrete element method has been used several times as an alternative to obtain incremental responses of granular materials. Crushable grains add one extra source of irreversibility to granular materials. Crushability has been variously incorporated into different constitutive models. Again, it will be helpful to obtain incremental responses of crushable granular materials to test these models, but the experimental difficulties are increased. Making use of a recently introduced crushing model for discrete element simulation, this paper presents a new procedure to obtain incremental responses in discrete analogs of granular crushable materials. The parallel probe approach, previously used for uncrushable discrete analogs, is here extended to account for the presence of crushable grains. The contribution of grain crushing to the incremental irreversible strain is identified and separately measured. Robustness of the proposed method is examined in detail, paying particular attention to aspects such as dynamic instability or crushing localization. The proposed procedure is later applied to map incremental responses of a discrete analog of Fontainebleau sand on the triaxial plane. The effect of stress ratio and granular state on plastic flow characteristics is highlighted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The direct simple shear (DSS) device is one of the commonly used laboratory element testing tools to characterize the shear behaviour of soil. The interpretation of results from an element test requires understanding of the degree of stress and strain non-uniformities in a given test specimen. So far, studies on stress and strain non-uniformities in the DSS test have been conducted using direct boundary measurements of stresses in laboratory specimens supported by a continuum based analytical approach. Discrete element modelling now provides a means of modelling the soil behaviour in a realistic manner using a particulate approach. Accordingly, the performance of a DSS specimen was modelled using discrete element modelling with emphasis on assessing stress and strain non-uniformities in the specimen during shearing. The approach allowed for the numerical determination of stresses not only at the boundaries, but also within the DSS specimen. It was shown that mobilised stress ratio distribution throughout the shearing phase for the majority of specimen volume at locations near the central planes parallel and perpendicular to the direction of shearing is fairly uniform. Finally, it was noted that the potential for particle slippage at locations near the specimen centre can result in non-uniform shear strain distributions.  相似文献   

13.
    
Experimental observations clearly show that the relative humidity (hr) conditions influence significantly the creep behavior of cement‐based materials, indicating that the water present within these materials plays a crucial role. This work presents a creep model for hardened cement pastes (HCP), based on a multiscale homogenization approach. It takes into account both free and adsorbed water contained in the porosity and investigates their effects on the HCP macroscopic creep behavior. The calcium silicate hydrate phase is assumed to be linear viscoelastic, and the Mori–Tanaka scheme is applied in the Laplace–Carson space to the composite formed of porosity, calcium silicate hydrate, and the other main hydrated compounds (which behavior is linearly elastic) by making use of the correspondence principle. With this model, estimations of the evolution of the macroscopic creep behavior of HCP submitted to constant external loading are examined under different hr and compared with available experimental data. Finally, a method for implementing the model in a finite element code is proposed, and simulations of standard creep tests are performed to assess its validity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
    
In this paper the macroscopic elastic properties of injected or cemented sands are derived from the characteristics of the constituents and the analysis of the microstructure using a multi‐scale modelling approach. Particular interest is given to the choice of the representative elementary volume, by relying on existing microstructural data. The periodic homogenization is adopted and required numerical solutions are performed by the finite element method. An assessment of the validity of the multi‐scale approach is achieved through comparison with theoretical and experimental results on cemented and injected granular media reported in the literature. The capabilities of the model are also used to investigate the influence of geometrical and mechanical microscale parameters on the macroscopic behaviour of the treated materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
    
The micromechanics of wet granular materials encompasses complex microstructural and capillary interconnects that can be readily described through a formal derivation of stress transmission in such a 3‐phase medium. In the quest for defining an appropriate stress measure, the stress tensor expression that results from homogenization [Duriez et al. J Mech Phys Solids 99 (2017): 495‐511] of such a medium provides theoretical insights necessary to extract useful information on the relationship between capillary effects and microforce interactions via several small‐scale parameters whose evaluation can be challenging. Using instead a statistical approach where microvariable distributions are described by probability density functions, the current study provides simple estimates of stress components in terms of only a few tractable microvariables such as coordination number and fabric anisotropy. In particular, the latter recognizes details of contacts such as force interactions being either mechanical or capillary, including interactions with and without mechanical contact. The developed expressions are in a good agreement with discrete element method simulation results of the triaxial loading of a wet granular assembly, notably for hydrostatic (mean) pressure. A new set of dimensionless groups is also identified to characterize the significance of mechanical and capillary physics, which facilitates a better understanding of the contribution of dominating elements to stress, while also providing the opportunity to incorporate important capillary effects in micromechanically based constitutive formulations.  相似文献   

16.
17.
基于接触价键的颗粒材料微观临界状态   总被引:1,自引:0,他引:1  
张洪武  秦建敏 《岩土力学》2008,29(4):865-870
用颗粒离散元法,分别对二维圆形、椭圆形颗粒体进行了双轴压缩数值模拟。微观尺度的变形是基于孔隙胞元和其中的变形来计算的,而单个孔隙胞元的变形通过周围颗粒的相对运动来计算。针对该方法提出了以接触价键(每个孔隙胞元的边数)来表征颗粒材料微观临界状态的理论。为了定义临界接触价键的极限值,分别讨论了摩擦系数较大、较小时的两种情况。文中给出了微观几何织构(包括接触价键、孔隙胞元的形状、孔隙比)随压缩变形的演变过程,比较了不同颗粒形状、颗粒间摩擦系数以及颗粒体的固结压力对颗粒体的微观力学性能的影响。计算结果表明,颗粒材料的微观临界状态并不是可以唯一表征的,而是受围压、摩擦系数,颗粒形状等参数的共同影响。  相似文献   

18.
    
This paper endows the recently‐proposed granular element method (GEM) with the ability to perform 3D discrete element calculations. By using non‐uniform rational B‐Splines to accurately represent complex grain geometries, we proposed an alternative approach to clustering‐based and polyhedra‐based discrete element methods whereby the need for complicated and ad hoc approaches to construct 3D grain geometries is entirely bypassed. We demonstrate the ability of GEM in capturing arbitrary‐shaped 3D grains with great ease, flexibility, and without excessive geometric information. Furthermore, the applicability of GEM is enhanced by its tight integration with existing non‐uniform rational B‐Splines modeling tools and ability to provide a seamless transition from binary images of real grain shapes (e.g., from 3D X‐ray CT) to modeling and discrete mechanics computations.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
张铎  刘洋  吴顺川 《岩土力学》2016,37(Z1):509-520
通过一系列真三轴离散元数值试验,模拟了不同应力路径下的等b试验中散体材料的强度特征。根据模拟结果详细地分析了三维应力条件下中主应力和应力路径对散体材料峰值强度的影响,研究了峰值摩擦角、峰值应力比的变化规律,并根据真应力的概念和组构张量的演化结果分析了散体材料的强度成因。研究表明,在不同类型的数值试验中峰值偏应力随b参数的变化规律不同,但采用初始围压归一化后的应力-应变曲线规律一致。峰值强度线的斜率只与b值有关而与应力路径无关,且随着b值的增加,峰值应力比qf /pf逐渐减小,数值模拟结果与室内试验结果吻合较好;随着应变的发展,数值试样的组构也随之发生变化,产生了明显的应力诱发各向异性;散体的强度为颗粒摩擦及材料各向异性共同作用的结果;理论上,组构比-应力比坐标系中破坏点位置仅取决于颗粒摩擦角 ,而数值模拟结果与理论值的差异源于颗粒间咬合和滚动摩擦的影响,其影响与颗粒表面摩擦系数有关,也受空间应力状态的影响。  相似文献   

20.
  总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号