首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
通过高温固相扩散反应合成了稀土元素镝掺杂的 Zn4 - x B6 O1 3∶ x Dy3+ 磷光体 .测定了该化合物在高能6 0 Co伽玛射线辐照下的热释发光曲线和三维热释光谱 .三维热释光谱表明 ,位于大约 480 nm和 5 80 nm的发光谱带来自于 Dy3+ 离子的 f-f 跃迁 .基质中掺杂的 Dy3+ 离子浓度的变化能够改变陷阱的相对分布 ,随着Dy3+浓度的增加 ,发光峰温向高温方向移动 ,这可提高剂量器的热稳定性 .当辐照剂量增加时 ,发光峰温亦向高温方向移动 ,即陷阱加深 .确定了 Zn3.86 B6 O1 3∶ 0 .1 6Dy3+样品主峰的陷阱深度 E=0 .73 e V,频率因子S=2 .43× 1 0 9s- 1 .在 1~ 1 0 0 Gy治疗级范围内 ,Zn3.86 B6 O1 3∶ 0 .1 6Dy3+ 对 6 0 Co伽玛射线辐照的热释光剂量响应呈良好的线性关系 .实验结果表明 ,Zn3.86 B6 O1 3∶ 0 .1 6Dy3+是一个潜在的应用于临床医疗的伽玛射线电离辐射热释光剂量计材料 .  相似文献   

2.
通过高温固相法合成了SrB6O10∶Tb热释光磷光体,并系统地研究了Ce3+,Li+共掺杂,Tb3+掺杂浓度以及60Coγ射线辐照剂量对其热释发光的影响,同时观察了其热释光发射。研究发现:Ce3+,Li+共掺杂对SrB6O10∶Tb磷光体的热释光灵敏度并没有提高。Tb3+掺杂浓度对SrB6O10热释光磷光体的灵敏度有一定影响:在从1%~10%(摩尔分数)的Tb3+掺杂浓度范围内,2%为最佳掺杂浓度。在此掺杂浓度条件下,用Chen的峰形法评估了此磷光体的动力学参数,发现其遵守二级动力学;增加辐照剂量,热释光发射也随之增强,并在所研究的剂量范围内呈线性变化;在其三维热释光发射谱中,观察到了Tb3+离子的特征发射。  相似文献   

3.
电子俘获材料Zn4B6O13:Dy3+的热释光特性研究   总被引:4,自引:0,他引:4  
通过高温固相扩散反应合成了稀土元素镝掺杂的Zn4-xB6O13:xDy3+磷光体.测定了该化合物在高能60Co伽玛射线辐照下的热释发光曲线和三维热释光谱.三维热释光谱表明,位于大约480nm和580nm的发光谱带来自于Dy3+离子的f-f跃迁.基质中掺杂的Dy3+离子浓度的变化能够改变陷阱的相对分布,随着Dy3+浓度的增加,发光峰温向高温方向移动,这可提高剂量器的热稳定性.当辐照剂量增加时,发光峰温亦向高温方向移动,即陷阱加深.确定了Zn3.86B6O13:0.16Dy3+样品主峰的陷阱深度E=0.73eV,频率因子S=2.43×109s-1.在1~100Gy治疗级范围内,Zn3.86B6O13:0.16Dy3+对60Co伽玛射线辐照的热释光剂量响应呈良好的线性关系.实验结果表明,Zn3.86B6O13:0.16Dy3+是一个潜在的应用于临床医疗的伽玛射线电离辐射热释光剂量计材料.  相似文献   

4.
单掺杂与共掺杂离子对Sr2Mg(BO3)2磷光体热释发光的影响   总被引:1,自引:0,他引:1  
通过高温固相法合成了Sr2Mg(BO3)2磷光体, 并研究了Li+, Bi3+, Gd3+, Ti4+共掺杂对Sr2Mg(BO3)2∶Dy磷光体热释发光的影响. 研究发现: Li+的共掺杂使Sr2Mg(BO3)2∶Dy磷光体的热释光主峰强度增加, 而 Bi3+, Gd3+或Ti4+的掺入使样品的热释光强度降低. 在Li+, Bi3+, Gd3+或Ti4+共掺杂的Sr2Mg(BO3)2∶Dy磷光体高温热释光发射谱中, 我们观察到了480, 579, 662和755 nm的发射峰, 为特征Dy3+离子的4F9/2→6H15/2, 4F9/2→6H13/2, 4F9/2→6H11/2和4F9/2→6H9/2跃迁, 与Sr2Mg(BO3)2∶Dy磷光体的发射一致. 利用峰形法, 我们评估了Sr2Mg(BO3)2∶ , ( )热释光磷光体234 ℃发光峰的动力学参数, 陷阱深度E=1.1 eV, 频率因子s=6.3×109 s-1, 遵循二级动力学.  相似文献   

5.
采用高温固相法合成了Li Mg PO4:Tm,Tb粉末样品,研究了热释光特性与发光机制,测量了热释光发光曲线、热释光三维光谱、X射线衍射谱和荧光光谱以及剂量响应曲线。热释光三维光谱显示其主发光峰的发光波长为455 nm,峰温为325℃。采用热释光一般级动力学方程对发光曲线进行拟合得到其陷阱深度为1.34 e V。Li Mg PO4:Tm,Tb主发光峰面积与Al2O3:C相近,在0.1~2000 Gy范围内具有良好的线性响应。对Li Mg PO4:Tm,Tb粉末样品反复测量的研究结果表明该样品具有良好的稳定性和可重复性。  相似文献   

6.
通过高温固相法合成了SrB6O10:Tb热释光磷光体, 并系统地研究了Ce3+, Li+共掺杂, Tb3+掺杂浓度以及60Co γ射线辐照剂量对其热释发光的影响, 同时观察了其热释光发射. 研究发现: Ce3+, Li+共掺杂对SrB6O10:Tb磷光体的热释光灵敏度并没有提高. Tb^3+掺杂浓度对SrB6O10热释光磷光体的灵敏度有一定影响: 在从1%~10%(摩尔分数)的Tb3+掺杂浓度范围内, 2%为最佳掺杂浓度. 在此掺杂浓度条件下, 用Chen的峰形法评估了此磷光体的动力学参数, 发现其遵守二级动力学;增加辐照剂量, 热释光发射也随之增强, 并在所研究的剂量范围内呈线性变化;在其三维热释光发射谱中, 观察到了Tb^3+离子的特征发射.  相似文献   

7.
杂质的添加对SrAl_2O_4∶Eu~(2 ),Dy~(3 )余辉发光特性的改善   总被引:1,自引:1,他引:0  
采用溶胶 凝胶法制备SrAl2 O4 ∶Eu2 ,Dy3 磷光体 ,并在合成过程中添加硼或硅以探讨光致发光及长余辉发光性质。发现硼、硅添加物不仅是助熔剂 ,且能改良SrAl2 O4 ∶Eu2 ,Dy3 之长余辉的持续时间及余辉发光强度。基于不同磷光体样品的实验结果比较 ,综合材料表面微结构观察、X射线衍射图谱、热释发光光谱与余辉衰减曲线的测量等实验结果分析 ,推断在SrAl2 O4 ∶Eu2 ,Dy3 中添加硼、硅可导致磷光体缺陷增加并稳定活化剂Eu2 的价态。  相似文献   

8.
研究了以La3+离子为辅助激活剂,对Sm3+掺杂的发光材料Sr2SnO4:Sm3+余辉性能的影响。采用传统的高温固相法合成Sr2SnO4∶Sm3+,La3+红色长余辉发光材料。利用X射线粉末衍射仪、荧光光谱仪、热释光剂量仪等手段对粉末样品进行了表征。分析结果表明,在1400℃得到了单相Sr2SnO4,Sr2SnO4∶Sm3+,La3+发光粉末有563、599和646 nm 3个发射峰,与Sm3+单掺杂的Sr2SnO4∶Sm3+相比,其光谱发射峰位没有明显变化。余辉亮度衰减曲线表明适量的La3+掺杂可以延长Sr2SnO4∶Sm3+的余辉时间。通过对热释光谱的分析,解释了双掺杂发光粉余辉性能增强的原因,La3+掺杂增加了更多适宜深度的陷阱(VSr″),可以有效存储光能,增强余辉的时间和强度。  相似文献   

9.
在活性炭还原气氛下高温固相法合成了Ba3(PO4)2:Ce3+,Dy3+紫外发射荧光粉。XRD图谱表明,烧结温度为1100℃时保温处理3 h,样品为单相的Ba3(PO4)2型六方晶系结构。荧光光谱显示:单掺Ce3+样品中,Ce3+掺杂浓度为8%(摩尔分数)时样品的发光最强,发射峰的位置处在350 nm附近(Ce3+的2D→2F5/2和2D→2F7/2跃迁发射)。适量的Sr2+取代部分Ba2+离子,改变了基质晶格环境,使样品的发光强度得到提高且发射峰向长波方向红移。引入Dy3+作为敏化剂,样品发射峰红移到386 nm,亮度增强,主要是由于Dy3+和Ce3+之间发生了有效的能量传递过程。确定了Dy3+的最佳掺杂浓度为3%,发光强度提高了27%。  相似文献   

10.
Sr2SiO4∶Dy3+材料制备及发光特性   总被引:2,自引:1,他引:1  
采用高温固相法制备了Sr2SiO4∶Dy3+发光材料. 在365 nm紫外光激发下, 测得Sr2SiO4∶Dy3+材料的发射光谱为一个多峰宽谱, 主峰分别为486, 575和665 nm; 监测575 nm的发射峰, 所得材料的激发光谱为一个多峰宽谱, 主峰分别为331, 361, 371, 397, 435, 461和478 nm. 研究了Dy3+掺杂浓度对Sr2SiO4∶Dy3+材料发射光谱强度的影响. 研究结果显示, 随着Dy3+浓度的增大, 黄、蓝发射峰比值(Y/B)也逐渐增大; 随着Dy3+浓度的增大, 575 nm发射峰强度先增大后减小. 加入电荷补偿剂Li+, Na+和K+均提高了Sr2SiO4∶Dy3+材料的发射光谱强度, 其中以Li+的情况最为明显.  相似文献   

11.
采用柠檬酸燃烧法制备了稀土TB3 掺杂的CaLa1-xAl3O7:xTb3 发光材料的前驱粉末,在低于700℃退火处理时,得到非晶态样品,而高于800℃退火处理后为纯相的CaLa1-xAl3O7:xTb3 粉末样品.通过三维荧光光谱、激发光谱和发射光谱研究了Tb3 在CaLaAl3O7基质中的发光性能及Tb3 掺杂量、退火温度和柠檬酸与金属离子的配比等对发光强度的影响.结果显示.非晶态和晶态CaLa1-xAl3O7:xTb3 品都可发光,在240 nm波长光的激发下,CaLaAl3O7:Tb3 粉体产生Tb3 的特征发射峰,归属于5D4-7FJ(J=6,5,4,3)跃迁,主发射峰位置均在543 nm处(5D4-7F5跃迁),随着粉末逐渐成相5D4-7F5跃迁明显增强.  相似文献   

12.
采用水热-均匀共沉淀法制备了纳米SrAl2O4:Eu2+,Dy3+长余辉发光材料.通过XRD、TEM、荧光光谱、热释光谱对其结构和性能进行分析.XRD结果表明所制备的SrAl2O4:Eu2+Dy3+纳米发光材料为单相,属单斜晶系.TEM测试表明纳米SrAl2O4:Eu2+,Dy3+发光材料为规则的球状粒子,粒径为50~80 nm,且分散性良好.激发和发射光谱测试表明,样品的激发光谱是峰值在356 nm 的连续宽带谱,发射光谱是峰值位于512 nm的宽带谱,与SrAl2O4:Eu2+,Dy3+粗晶材料相比,激发和发射光谱都出现了"蓝移"现象.样品的热释光峰值位于358 K,适合于产生长余辉.  相似文献   

13.
采用柠檬酸盐硝酸盐燃烧法制备了GdAlO3∶Tb,RE荧光粉体.在紫外激发下(254nm),GdAlO3∶Tb发射绿色荧光(5D4→7F5,544nm),Dy共掺杂对绿色发光有增强作用,Ce共掺杂对GdAlO3∶Tb绿色发光有降低作用.激发谱和能谱研究表明:Dy能级嵌入Tb主发射能级5D4(绿色发光能级)、5D3(蓝色发光能级)能级之间,Ce能级嵌入Tb主发射能级5D4、5D3能级上方.这种能级嵌入方式,使得稀土离子之间存在声子支持的共振能量传递,但Tb→Dy→Tb能量传递使Tb绿色发射(5D4→7FJ(J=3,4,5,6))增强,蓝色发射(5D3→7FJ(J=3,4,5,6))减弱;而Ce→Tb能量传递使Tb蓝色发射增强,绿色发射减弱.  相似文献   

14.
采用水热法辅助合成了纯相Ca2Zn4Ti16O38∶Pr3+荧光粉,初始nCa∶nZn∶nTi=2∶4.1∶15,煅烧条件为1 050℃空气气氛烧结5 h。并以X射线衍射、扫描电镜、紫外可见漫反射光谱和荧光光谱表征了样品的物相组成、微观形貌和光谱性质。合成的荧光粉在高温煅烧后仍较好地保持了球形的微观形态,优化的Pr3+掺杂浓度为0.015。Ca2Zn4Ti16O38∶Pr3+荧光粉在471 nm波长激发下发射红光,发射谱通过高斯分峰拟合得到位于605、620和645 nm的3个发射峰,分别对应于Pr3+的1D2→3H4,3P0→3H6和3P0→3F2跃迁。在471 nm波长激发下,Ca2Zn4Ti16O38∶Pr3+的614 nm红光发射表现出超长余辉特性,表明该荧光粉是一种能被可见光有效激发的红色长余辉荧光粉。  相似文献   

15.
采用水热法及后续热处理制备了-βGa2O3∶Dy3+纳米棒束。利用X射线粉末衍射(XRD),场发射电子扫描显微镜(FESEM)、发光光谱等测试手段对-βGa2O3∶Dy3+的物相、形貌、发光性质等进行了研究。FESEM等测试表明水热样品是由直径约100 nm,长约2μm的纳米棒组成的长径比约为3的羟基氧化镓(GaOOH)纳米棒束。经过900℃高温热处理,得到了形貌和尺寸基本保持不变的-βGa2O3∶Dy3+纳米棒束。光致发光测试表明,Dy3+的发光由分别归属于4F9/2-6H15/2的蓝光(460~505 nm,491 nm为最强峰)和4F9/26-H13/2的黄光(570~600 nm,580 nm为最强峰)组成。-βGa2O3基质可以有效地向Dy3+传递能量。与固相法样品相比,采用水热后续热处理方法制备的样品在分散性、形貌、能量传递和寿命方面明显优于固相法样品。  相似文献   

16.
王霞  胡辉  白燕 《无机化学学报》2013,29(4):659-664
采用水热法制备了发白光的Li+掺杂α-TeO2∶Tm3+/Er3+/Yb3+和β-TeO2∶Tm3+/Er3+/Yb3+纳米上转换发光材料。采用X射线衍射、透射电镜和上转换发光光谱对制备的TeO2∶Tm3+/Er3+/Yb3+/Li+纳米材料进行表征,结果显示:Li+的掺入基本不改变纳米材料的晶型和结构;在980 nm近红外光的激发下,纳米材料发射出中心波长476 nm的蓝光,525 nm及545 nm的绿光和659 nm及675nm的红光,分别对应于Tm3+的1G4→3H6能级跃迁,Er3+的2H11/2→4I15/2和4S3/2→4I15/2能级跃迁,Er3+的4F9/2→4I15/2能级跃迁和Tm3+的3F2→3H6能级跃迁;Li+的掺入能够增大白光体系的发光强度,基本不改变纳米材料的白光颜色。此外,探讨了纳米材料的上转换发光机理。  相似文献   

17.
采用高温固相法合成了Sr3La1-x(PO4)3:xDy3+荧光粉,并对其结构和发光特性进行了研究。样品发射光谱呈多峰发射,主峰位于482,576和666 nm,分别对应Dy3+的4F9/2→6H15/2,4F9/2→6H13/2和4F9/2→6H11/2特征跃迁。监测不同发射峰,激发光谱峰位置不变,主激发峰位于348,362和385 nm,可以被InGaN管芯有效激发。分析了Dy3+掺杂浓度对样品发光强度的影响,确定Dy3+的最佳掺杂摩尔分数为10%。根据Dexter理论分析其浓度猝灭机理为电偶极-电偶极相互作用。不同Dy3+掺杂浓度样品发射光谱的色坐标均在白光区域内。  相似文献   

18.
采用溶胶鄄凝胶法制备了SrAl2O4∶Eu2 ,Dy3 纳米长余辉发光材料,研究了pH值、反应温度和络合剂等对溶胶鄄凝胶形成的影响,研究了灼烧温度对SrAl2O4∶Eu2 ,Dy3 晶相、颗粒尺度和发光性能的影响。利用XRD,SEM,光谱分析等手段对产物进行了结构和性能分析。实验结果表明,在800℃时SrAl2O4晶相开始形成但没有发光,而在1100℃烧结的样品则具有很好的发光性能。样品平均晶粒尺寸随灼烧温度升高而增加,平均晶粒尺寸为20~40nm。样品的激发光谱是峰值在240,330,378和425nm的连续宽带谱,发光光谱是峰值在523nm的宽带谱,与SrAl2O4∶Eu2 ,Dy3 粗晶材料相比,发光光谱发生了“红移”现象。样品的热释光峰值位于157℃,与SrAl2O4∶Eu2 ,Dy3 粗晶材料相比,峰值向低温移动了13℃。  相似文献   

19.
采用高温固相法合成了系列单相Ca(1-x-y)A l2O4∶Eux2+,Ndy3+(0≤x≤0.045,0≤y≤0.0037)粉末样品,并表征了其发光特性.研究结果表明,样品的发射光谱为最大发射峰位于440 nm的宽带谱,属于Eu2+的4f65d→4f7跃迁.通过对Eu2+,Nd3+掺杂量与样品发光性能之间关系的研究发现,Eu2+和Nd3+最佳掺杂量分别为x=0.001 25和y=0.002 5,并且Nd3+对改善蓝色长余辉材料CaA l4∶Eu2+的余辉性能具有重要的作用.在最佳掺杂条件下,样品的余辉时间可达1 000 m in,初始亮度大于1 200 m cd/m2,60 m in后发光粉的亮度仍然在10 m cd/m2以上.利用正电子湮灭技术和热释光技术,研究了Eu2+和Nd3+对CaA l2O4∶Eu2+,Nd3+材料的发光性能的影响.  相似文献   

20.
采用高温固相法制备了白蓝光双发射为一体的Cd0.5Zn0.5B4O7∶Ce/Dy系列发光材料. 由XRD测得Cd0.41Zn0.5B4O7∶Ce0.04/Dy0.02的晶胞参数: a=1.3885 nm, b=0.8020 nm, c=0.8670 nm, 属于正交晶系, Pbca空间群. 在Ce/Dy双掺的体系中存在Ce3+和Dy3+两种发光中心, 254~350 nm激发主要是Dy3+的 4F9/2→6H15/2和4F9/2→6H13/2跃迁发射, 而355—390 nm激发主要为Ce3+的5d→4f跃迁发射. 340 nm激发Ce/Dy双掺发光体的发射强度是同浓度Dy3+单掺的31倍, Ce3+是Dy3+的高效敏化剂, 而355—390 nm激发Dy3+是Ce3+的敏化剂. 体系中存在少见的Ce3+→Dy3+与Dy3+→Ce3+的能量双向传递.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号