首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interpretation of carbon dioxide diffusion behavior in coals   总被引:3,自引:1,他引:3  
Storage of carbon dioxide in geological formations is for many countries one of the options to reduce greenhouse gas emissions and thus to satisfy the Kyoto agreements. The CO2 storage in unminable coal seams has the advantage that it stores CO2 emissions from industrial processes and can be used to enhance coalbed methane recovery (CO2-ECBM). For this purpose, the storage capacity of coal is an important reservoir parameter. While the amount of CO2 sorption data on various natural coals has increased in recent years, only few measurements have been performed to estimate the rate of CO2 sorption under reservoir conditions. An understanding of gas transport is crucial for processes associated with CO2 injection, storage and enhanced coalbed methane (ECBM) production.A volumetric experimental set-up has been used to determine the rate of sorption of carbon dioxide in coal particles at various pressures and various grain size fractions. The pressure history during each pressure step was measured. The measurements are interpreted in terms of temperature relaxation and transport/sorption processes within the coal particles. The characteristic times of sorption increase with increasing pressure. No clear dependence of the characteristic time with respect to the particle size was found. At low pressures (below 1 MPa) fast gas diffusion is the prevailing mechanism for sorption, whereas at higher pressures, the slow diffusion process controls the gas uptake by the coal.  相似文献   

2.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

3.
A theoretical model for gas adsorption-induced coal swelling   总被引:6,自引:2,他引:6  
Swelling and shrinkage (volumetric change) of coal during adsorption and desorption of gas is a well-known phenomenon. For coalbed methane recovery and carbon sequestration in deep, unminable coal beds, adsorption-induced coal volumetric change may cause significant reservoir permeability change. In this work, a theoretical model is derived to describe adsorption-induced coal swelling at adsorption and strain equilibrium. This model applies an energy balance approach, which assumes that the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid. The elastic modulus of the coal, gas adsorption isotherm, and other measurable parameters, including coal density and porosity, are required in this model. Results from the model agree well with experimental observations of swelling. It is shown that the model is able to describe the differences in swelling behaviour with respect to gas species and at very high gas pressures, where the coal swelling ratio reaches a maximum then decreases. Furthermore, this model can be used to describe mixed-gas adsorption induced-coal swelling, and can thus be applied to CO2-enhanced coalbed methane recovery.  相似文献   

4.
Presently many research projects focus on the reduction of anthropogenic CO2 emissions. It is intended to apply underground storage techniques such as flue gas injection in unminable coal seams. In this context, an experimental study has been performed on the adsorption of pure CO2 and preferential sorption behavior of flue gas. A coal sample from the Silesian Basin in Poland (0.68% V Rr), measured in the dry and wet state at 353 K has been chosen for this approach. The flue gas used was a custom class industrial flue gas with 10.9% of CO2, 0.01% of CO, 9% of H2, 3.01% of CH4, 3.0% of O2, 0.106% of SO2 and nitrogen as balance.Adsorption isotherms of CO2 and flue gas were measured upto a maximum of 11 MPa using a volumetric method. Total excess sorption capacities for CO2 on dry and wet Silesia coal ranged between 1.9 and 1.3 mmol/g, respectively. Flue gas sorption capacities on dry and wet Silesia coal were much lower and ranged between 0.45 and 0.2 mmol/g, respectively, at pressures of 8 MPa. The low sorption capacity of wet coal has resulted from water occupying some of the more active adsorption sites and hence reducing the heterogeneity of adsorption sites relative to that of dry coal. Desorption tests with flue gas were conducted to study the degree of preferential sorption of the individual components. These experiments indicate that CO2 is by far the prefered sorbing component under both wet and dry conditions. This is followed by CH4. N2 adsorbs very little on the coal in the presence of CO2 and CH4. It is also observed that the adsorption of CO2 onto coal is not significantly hindered by the addition of other gases, other than dilution effect of the pressure.In addition to the sorption experiments, the density of the flue gas mixture has been determined up to 18 MPa at 318 K. A very good precision of these measurements were documented by volumetric methods.  相似文献   

5.
A large collection of well-characterized coals, documented in the Center for Applied Energy Research's (CAER) database, was used to estimate the CO2 content of maceral concentrates from Kentucky and Illinois high volatile bituminous coals. The data showed no correlation between CO2 versus coal ranks and between CO2 versus maceral content. Subsequently, eight sets of low-ash density-gradient centrifugation (DGC) maceral concentrates from five coal beds were examined, spanning in the high volatile rank range. Heating value was not determined on the concentrates, but instead was calculated using the Mott–Spooner formula. There was a good correlation between predicted CO2 and maceral content for the individual iso-rank (based on vitrinite reflectance, analyzed on whole (parent) coal) sets. In general, the predicted CO2 increases from liptinite-rich through vitrinite-rich to inertinite-rich concentrates (note: no “concentrates” are absolutely monomaceral).  相似文献   

6.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

7.
Geological sequestration of CO2 is one of the options studied to reduce greenhouse gas emissions. Although the feasibility of this concept is proven, apart from literature data on modelling still little is known about the CO2–water–rock interactions induced by CO2-injection.To evaluate the effect of CO2–water–rock interactions on three sandstone aquifers in NE-Belgium an experimental setup was built. Eighteen experiments were performed in which sandstones were exposed to supercritical CO2. CO2–water–rock interactions were deduced from the evolution of aqueous concentrations of 25 species and a thorough characterisation of the sandstones before and after treatment. The results show that dissolution of ankerite/dolomite and Al-silicates could enhance porosity/permeability. The observed precipitation of end-member carbonates could increase storage capacity if it exceeds carbonate dissolution. Precipitation of the latter and of K-rich clays as observed, however, can hamper the injection.  相似文献   

8.
Seismic surveys successfully imaged a small scale CO2 injection (1,600 ton) conducted in a brine aquifer of the Frio Formation near Houston, Texas. These time-lapse borehole seismic surveys, crosswell and vertical seismic profile (VSP), were acquired to monitor the CO2 distribution using two boreholes (the new injection well and a pre-existing well used for monitoring) which are 30 m apart at a depth of 1,500 m. The crosswell survey provided a high-resolution image of the CO2 distribution between the wells via tomographic imaging of the P-wave velocity decrease (up to 500 m/s). The simultaneously acquired S-wave tomography showed little change in S-wave velocity, as expected for fluid substitution. A rock physics model was used to estimate CO2 saturations of 10–20% from the P-wave velocity change. The VSP survey resolved a large (∼70%) change in reflection amplitude for the Frio horizon. This CO2 induced reflection amplitude change allowed estimation of the CO2 extent beyond the monitor well and on three azimuths. The VSP result is compared with numerical modeling of CO2 saturations and is seismically modeled using the velocity change estimated in the crosswell survey.  相似文献   

9.
本文对目前开采天然气水合物的5种方法进行了归纳总结,重点分析了CO2置换开采以及固体开采法,并通过分析这2种开采方法的优劣势,提出了水射流冲蚀、破碎海洋天然气水合物储层联合CO2置换开采天然气水合物的新思路。水射流冲蚀、破坏水合物储层后形成的采空区能为CO2提供更好的储藏空间并提高其与储层的作用面积,提高置换效率;封存的CO2水合物也可以提高水合物储层的稳定性,具有良好的互补效应。实验结果表明,在整个置换过程中,含采空区储层CH4置换率为24.3%,CO2封存率为22.1%;完整储层CH4置换率为15.3%,CO2封存率为20.9%,置换率提升约59%,封存率提升约5.7%。采空区的作用主要体现在提升水合物置换介质的注入量上。  相似文献   

10.
Numerical modelling of the processes of CO2 storage in coal and enhanced coalbed methane (ECBM) production requires information on the kinetics of adsorption and desorption processes. In order to address this issue, the sorption kinetics of CO2 and CH4 were studied on a high volatile bituminous Pennsylvanian (Upper Carboniferous) coal (VRr=0.68%) from the Upper Silesian Basin of Poland in the dry and moisture-equilibrated states. The experiments were conducted on six different grain size fractions, ranging from <0.063 to 3 mm at temperatures of 45 and 32 °C, using a volumetric experimental setup. CO2 sorption was consistently faster than CH4 sorption under all experimental conditions. For moist coals, sorption rates of both gases were reduced by a factor of more than 2 with respect to dry coals and the sorption rate was found to be positively correlated with temperature. Generally, adsorption rates decreased with increasing grain size for all experimental conditions.Based on the experimental results, simple bidisperse modelling approaches are proposed for the sorption kinetics of CO2 and CH4 that may be readily implemented into reservoir simulators. These approaches consider the combination of two first-order reactions and provide, in contrast to the unipore model, a perfect fit of the experimental pressure decay curves. The results of this modeling approach show that the experimental data can be interpreted in terms of a fast and a slow sorption process. Half-life sorption times as well as the percentage of sorption capacity attributed to each of the two individual steps have been calculated.Further, it was shown that an upscaling of the experimental and modelling results for CO2 and CH4 can be achieved by performing experiments on different grain size fractions under the same experimental conditions.In addition to the sorption kinetics, sorption isotherms of the samples with different grain size fractions have been related to the variations in ash and maceral composition of the different grain size fractions.  相似文献   

11.
Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption.  相似文献   

12.
A variety of structural and stratigraphic factors control geological heterogeneity, inferred to influence both sequestration capacity and effectiveness, as well as seal capacity. Structural heterogeneity factors include faults, folds, and fracture intensity. Stratigraphic heterogeneity is primarily controlled by the geometry of depositional facies and sandbody continuity, which controls permeability structure. The permeability structure, in turn, has implications for CO2 injectivity and near-term migration pathways, whereas the long-term sequestration capacity can be inferred from the production history. Examples of Gulf Coast oil and gas reservoirs with differing styles of stratigraphic heterogeneity demonstrate the impact of facies variability on fluid flow and CO2 sequestration potential. Beach and barrier-island deposits in West Ranch field in southeast Texas are homogeneous and continuous. In contrast, Seeligson and Stratton fields in south Texas, examples of major heterogeneity in fluvial systems, are composed of discontinuous, channel-fill sandstones confined to narrow, sinuous belts. These heterogeneous deposits contain limited compartments for potential CO2 storage, although CO2 sequestration effectiveness may be enhanced by the high number of intraformational shale beds. These field examples demonstrate that areas for CO2 storage can be optimized by assessing sites for enhanced oil and gas recovery in mature hydrocarbon provinces.  相似文献   

13.
为揭示固体开采形成的采空区对CO2置换开采天然气水合物置换效果的影响,开展了含采空区储层与完整储层的CO2/N2置换开采不同天然气水合物饱和度对比实验研究。结果表明:对于水合物饱和度分别为30%和45%的试样,含采空区储层较完整储层的CH4置换率分别提高了5.5%和9%,单位体积CO2封存量分别提高了26.5%和39.8%。采空区的存在提高了置换介质与天然气水合物的摩尔比率,从而提供了更高的置换驱动力;且在较高水合物饱和度试样中采空区还会提高置换介质的扩散作用,导致含采空区储层的置换效果好于完整储层。因此,在固体开采后进一步进行CO2置换开采,可以提高置换开采效率,同时有助于碳封存与地层稳定,是一种潜在的海域天然气水合物安全、绿色开采模式。  相似文献   

14.
为寻求减缓全球变暖的途径,利用高压釜,开展不同温度下(75、100、125、150和175℃)CO2与钠长石的水热实验研究,以探讨CO2在长石砂岩中地质封存的可能性。结果表明,随着温度的升高,钠长石溶蚀强度逐渐增强,在150℃左右开始有菱镁矿、菱铁矿等碳酸盐矿物生成,175℃新矿物生成量增加,这表明CO2能够以碳酸盐矿物的形式在含钠长石的长石砂岩中以矿物的形式被“固定”,其被“固定”的温度在150℃左右。  相似文献   

15.
Quick-look assessments to identify optimal CO2 EOR storage sites   总被引:1,自引:0,他引:1  
A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.  相似文献   

16.
A large suite of natural gases (93) from the North West Shelf and Gippsland and Otway Basins in Australia have been characterised chemically and isotopically resulting in the elucidation of two types of gases. About 26% of these gases have anomalous stable carbon isotope compositions in the C1–C4 hydrocarbons and CO2 components, and are interpreted to have a secondary biogenic history. The characteristics include unusually large isotopic separations between successive n-alkane homologues (up to +29‰ PDB) and isotopically heavy CO2 (up to +19.5‰ PDB). Irrespective of geographic location, these anomalous gases are from the shallower accumulations (600–1700 m) where temperatures are lower than 75°C. The secondary biogenic gases are readily distinguishable from thermogenic gases (74% of this sample suite), which should assist in the appraisal of hydrocarbons during exploration where hydrocarbon accumulations are under 2000 m. While dissolution effects may have contributed to the high 13C enrichment of the CO2 component in the secondary biogenic gases, the primary signature of this CO2 is attributed to biochemical fractionation associated with anaerobic degradation and methanogenesis. Correlation between biodegraded oils and biodegraded “dry” gas supports the concept that gas is formed from the bacterial destruction of oil, resulting in “secondary biogenic gas”. Furthermore, the prominence of methanogenic CO2 in these types of accumulations along with some isotopically-depleted methane provides evidence that the processes of methanogenesis and oil biodegradation are linked. It is further proposed that biodegradation of oil proceeds via a complex anaerobic coupling that is integral to and supports methanogenesis.  相似文献   

17.
A continuously operated gas monitoring station was emplaced within the epicentral area of the NW Bohemian swarm earthquakes overlying directly the active Mariánské Lázně fault. The recordings of 8-month continuous monitoring period are presented. The variations in radon concentrations are similarly to variations in CO2, i.e. CO2 is considered to be the carrier gas for radon. Very small diurnal variations in gas concentration are caused by the earth tides, as daily variations in meteorological conditions cannot explain a short daily minimum at midday times. Sudden changes in gas concentration, which clearly exceed these diurnal variations occur and are always linked with seismic activities. Decreased gas concentration may indicate compression resulting in reduced fault permeability as is implied by negative peaks following local earthquake swarms. A sudden increase in CO2 and Rn concentration may indicate an increased fault permeability caused by stress redistribution, giving rise to opening of migration pathways. This implies a repeatedly sudden rise in gas concentration before local earthquake swarms. Several variations in gas concentration were monitored linked with remote earthquakes of ground motion amplitudes  >1 μm. These seismic events are accompanied by an interference of the diurnal gas concentration–stress-cycle along the Mariánské Lázně fault. However, if shocks of remote earthquake can alter properties of the migrating fluids or the fault properties it can be suggested that these are able to trigger local seismicity, as indicated in the case of the Slovenia earthquake on 12th July 2004.  相似文献   

18.
Gas adsorption isotherms of Akabira coals were established for pure carbon dioxide (CO2), methane (CH4), and nitrogen (N2). Experimental data fit well into the Langmuir model. The ratio of sorption capacity of CO2, CH4, and N2 is 8.5:3.5:1 at a lower pressure (1.2 MPa) regime and becomes 5.5:2:1 when gas pressure increases to 6.0 MPa. The difference in sorption capacity of these three gases is explained by differences in the density of the three gases with increasing pressure. A coal–methane system partially saturated with CH4 at 2.4 MPa adsorption pressure was experimentally studied. Desorption behavior of CH4 by injecting pure CO2 (at 3.0, 4.0, 5.0, and 6.0 MPa), and by injecting the CO2–N2 mixture and pure N2 (at 3.0 and 6.0 MPa) were evaluated. Results indicate that the preferential sorption property of coal for CO2 is significantly higher than that for CH4 or N2. CO2 injection can displace almost all of the CH4 adsorbed on coal. When modeling the CH4–CO2 binary and CH2–CO2–N2 ternary adsorption system by using the extended Langmuir (EL) equation, the EL model always over-predicted the sorbed CO2 value with a lower error, while under-predicting the sorbed CH4 with a higher error. A part of CO2 may dissolve into the solid organic structure of coal, besides its competitive adsorption with other gases. According to this explanation, the EL coefficients of CO2 in EL equation were revised. The revised EL model proved to be very accurate in predicting sorbed ratio of multi-component gases on coals.  相似文献   

19.
松辽盆地含CO_2火山岩气藏的形成和分布   总被引:2,自引:0,他引:2  
松辽盆地特有的深部构造背景和裂谷演化特征,造成盆地内含CO_2火山岩气藏的形成和富集。松辽裂谷盆地中新生代火山岩浆活动发育,总体上具有多期喷发、分布广泛和储集条件良好的特点。火山活动以中心式喷发为主,主要发育中基性-酸性火山岩,发育流纹岩、凝灰岩等多种岩石类型,爆发相和溢流相2种火山岩相。中生代火山岩在盆地内分布广泛,营域组构成深层有利储层,新生代火山岩在盆地外围出露较多,而在盆内出露较少。盆地高含量的二氧化碳为无机幔源成因,由青山口期和新生代幔源岩浆脱气形成。含CO_2火山岩气藏的形成主要受深部构造背景、深大断裂和中新生代火山岩控制。已发现含CO_2火山岩气藏主要分布于古中央隆起带及其两侧断陷的营城组火山岩中,具有点状、带状分布,局部富集的特点。根据主控因素分析,预测了5个CO_2富集区带。  相似文献   

20.
The rise of large vascular plants during the mid-Paleozoic brought about a major increase in the rates of weathering of silicate minerals that induced a drop in the level of atmospheric CO2 and contributed, via the atmospheric greenhouse effect, to global cooling and the initiation of the most long lived and a really extensive glaciation of the past 550 million years. Sedimentary burial of the microbiologically resistant remains of the plants resulted during the Permo-Carboniferous in both further lowering of CO2 and in elevation of atmospheric O2. Evidence of changes in CO2 and O2 are provided by mathematical models, studies of paleosols, fossil plants, fossil insects, and the effects of modern plants on silicate weathering, and by laboratory studies of the effects of changes in O2 on plants and insects. To cite this article: R.A. Berner, C. R. Geoscience 335 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号