首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In present study, an investigation was carried out to develop and validate an analytical method for the selective extraction and determination of griseofulvin (GSF) from plasma samples. For this purpose, a rational approach was made to synthesize and characterize the surface molecularly imprinted polymers (SMIPs). The SMIPs were utilized as solid phase extraction (SPE) sorbents. The SMIPs were prepared by using GSF as template molecule on the surface of modified silica particles through a non-covalent technique. The particles demonstrated high adsorption capacity (119.1 µg/mL), fast adsorption equilibrium time (30 min) and good recognition selectivity for the template drug. The scanning electron microscopy and infrared spectroscopy were used to explain the structural and morphological characteristics of the SMIPs and surface non-imprinted polymers. The SPE method was combined with HPLC for plasma analysis. The method validation results demonstrated that the established method possessed good linearity for GSF ranging from 0.1 to 50 µg/mL (R2 = 0.997). The limit of detection for this method was 0.02 µg/mL for rat plasma samples. The recoveries of GSF from spiked plasma samples were (90.7–97.7%) and relative standard deviations were (0.9–4.5%). Moreover, the SMIPs as selective SPE sorbent can be reused more than 8 times which is a clear advantage over commercial SPE sorbents. Finally, the usefulness of the proposed strategy was assessed by extraction and detection of GSF in real rat plasma samples.  相似文献   

3.
4.
Throughout a lifetime, articular joints experience many loading cycles and are prone to mechanical degradation. To safeguard the cartilage in these joints, the synovial fluid acts as a natural lubricant. However, degenerative joint diseases, like osteoarthritis, alter the composition of synovial fluid, diminishing its protective properties. In such cases, exogenous lubricants or viscosupplements can be injected to enhance the compromised synovial fluid's function. Scientists are now developing next-generation viscosupplements, based on hyaluronic acid (HA), that can better bind to and adhere to cartilage. Additionally, non-HA-based viscosupplements offer benefits over HA-based ones, as they possess more intricate molecular architectures, such as dendrimer or bottlebrush-like structures. These viscosupplements draw inspiration from natural molecules present in synovial fluid, providing them with a distinct advantage.  相似文献   

5.
Type I and type II pneumocytes are two forms of epithelial cells found lining the alveoli in the lungs. Type II pneumocytes exclusively secrete ‘pulmonary surfactants,’ a lipoprotein complex made up of 90% lipids (mainly phospholipids) and 10% surfactant proteins (SP-A, SP-B, SP-C, and SP-D). Respiratory diseases such as influenza, severe acute respiratory syndrome coronavirus infection, and severe acute respiratory syndrome coronavirus 2 infection are reported to preferentially attack type II pneumocytes of the lungs. After viral invasion, consequent viral propagation and destruction of type II pneumocytes causes altered surfactant production, resulting in dyspnea and acute respiratory distress syndrome in patients with coronavirus disease 2019. Exogenous animal-derived or synthetic pulmonary surfactant therapy has already shown immense success in the treatment of neonatal respiratory distress syndrome and has the potential to contribute efficiently toward repair of damaged alveoli and preventing severe acute respiratory syndrome coronavirus 2–associated respiratory failure. Furthermore, early detection of surfactant collectins (SP-A and SP-D) in the circulatory system can be a significant clinical marker for disease prognosis in the near future.  相似文献   

6.
We provide here a general view on the interactions of surfactants with viruses, with a particular emphasis on how such interactions can be controlled and employed for inhibiting the infectivity of enveloped viruses, including coronaviruses. The aim is to provide to interested scientists from different fields, including chemistry, physics, biochemistry, and medicine, an overview of the basic properties of surfactants and (corona)viruses, which are relevant to understanding the interactions between the two. Various types of interactions between surfactant and virus are important, and they act on different components of a virus such as the lipid envelope, membrane (envelope) proteins and nucleocapsid proteins. Accordingly, this cannot be a detailed account of all relevant aspects but instead a summary that bridges between the different disciplines. We describe concepts and cover a selection of the relevant literature as an incentive for diving deeper into the relevant material. Our focus is on more recent developments around the COVID-19 pandemic caused by SARS-CoV-2, applications of surfactants against the virus, and on the potential future use of surfactants for pandemic relief. We also cover the most important aspects of the historical development of using surfactants in combatting virus infections. We conclude that surfactants are already playing very important roles in various directions of defence against viruses, either directly, as in disinfection, or as carrier components of drug delivery systems for prophylaxis or treatment. By designing tailor-made surfactants, and consequently, advanced formulations, one can expect more and more effective use of surfactants, either directly as antiviral compounds or as part of more complex formulations.  相似文献   

7.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity.  相似文献   

8.
Microfluidic and electrochemical technologies have been at the forefront of the development of emerging analytical microsystems. Microfluidics and electrochemistry show a synergistic relationship, empowering their inherent features. Thus, integration of microfluidics and electrochemical (bio)sensors is envisioned as a powerful tandem for boosting the next generation of lab-on-a-chip platforms, including point-of-care and point-of-need systems. In this review, a general overview of the advantages, drawbacks, and gaps as well as remaining challenges and future trends of coupling microfluidics and electrochemical cells is presented. Special attention is given to the manufacturing and scale-up of the integrated devices and all those aspects that can push on the development of true lab-on-a-chip platforms for reaching the industrial domain and actual commercialization.  相似文献   

9.
Electrochemical disinfection has gained increasing interest in many sectors of social and industrial life. The reason is the growing need to disinfect the air, water, and special surfaces of different nature such as drinking water, wastewater, pool water, and other water qualities or surfaces. New research studies are reported and discussed. A stronger orientation on engineering aspects is intended. Following tendencies can be identified - research on complex liquid systems, implementation of risks consideration seen from by-product formation, and better cooperation between researchers and industry oriented to improve cell design and disinfection technology. Partially, reaction kinetics is studied and discussed at higher levels of likelihood. Furthermore, it can be found that more and more research papers deal with hybrid technologies to create novelty, to use synergistic effects and to meet the demands of real system treatment under practical conditions. A major focus can be identified for wastewater treatment/disinfection emphasizing electrocoagulation and electro-photocatalysis.  相似文献   

10.
11.
The use of plant proteins to design colloidal food systems is a hot topic in the current context of the protein transition. However, replacing animal-derived proteins (in particular, dairy proteins) that have been traditionally used for this purpose by plant proteins is a challenge from various perspectives, and in particular, because of drastically different solubility and functionality. A possible route to mitigate these issues is to combine plant and dairy proteins, providing that their interactions can be understood from the molecular to the macroscopic scale. This review addresses the major advances that have occurred in the field of such blend-based systems, all the way from their behaviour in aqueous dispersions to their potential applications in gels, foams and emulsions.  相似文献   

12.
The glucocorticoid derivative of budesonide with a phthalimide group is a drug candidate to treat inflammatory eye diseases; nevertheless, it presents low water solubility. Drug nanocrystals have been proposed to overcome this hurdle. The development of an innovative ophthalmic anti-inflammatory nanosuspension was performed using a design space approach. We obtained the particle size reduction of this glucocorticoid derivative on a nanometer scale (approximately 165.0 nm), applying wet bead milling on a super reduced scale. The design of experiment supported the optimization of the formula evaluating the parameters that influence reducing the particle size and also allowed determining the design space. Considering the two statistical models developed and the size range obtained, we proposed that the optimized formulation for the glucocorticoid derivative nanosuspension may be 1.0 wt% glucocorticoid derivative and 0.092 wt% cetylpyridinium chloride. This formulation was characterized by the morphological, physical–chemical, and mucoadhesive in vitro test and showed potential for ophthalmic use with reduced frequency of product application, improved efficiency, and safety, which may promote better patient compliance.  相似文献   

13.
Due to the presence of various phenolic compounds in D.sophia, this plant may have an inhibitory effect on α-Glc and ultimately diabetes control. Therefore, this work aims to scrutinize total phenolic, flavonoid contents, antioxidant capacity, and α-Glc inhibitory activity in aerial parts of methanolic D.sophia extract. The methanolic flower extracts were selected from among aerial parts for the experimental study of anti-diabetic effects by α-Glc inhibitory assays. The flower extracts were also studied by GC/MS to detect the compounds. The total phenolic and flavonoid contents were 21.38 ± 0.93 GAE/g and 96.2 ± 0.20 QE/g, respectively. The IC50 value of flower extract for α-Glc inhibition with mixed (Competitive/non-competitive) mode was found to be 20.34 ± 0.11 mg/ml. Furthermore, in-vivo studies showed that the blood glucose level reduced after consumption of flower extract compared to the control group. Twenty-one compounds were identified by GC/MS technique. These compounds were assessed for high docking scores against α-Glc in silico. Docking score calculations exhibited that the DES-α-Glc complex had a significantly higher binding energy (-6.13 Kcal/mol) than other compounds. The DES-α-Glc complex which displayed a higher docking energy value than the ACR was subjected to MDs studies. The findings of this study suggest that the flower extract of D.sophia can be used as a suitable additive in syrups or foods with anti-diabetic capacity.  相似文献   

14.
The collective motion of synthetic active colloids is an emerging area of research in soft matter physics and is important both as a platform for fundamental studies ranging from non-equilibrium statistical mechanics to the basic principles of self-organization, emergent phenomena, and assembly underlying life, as well as applications in biomedicine and metamaterials. The potentially transformative nature of the field over the next decade and beyond is a topic of critical research importance. Electrokinetic active colloids represent an extremely flexible platform for the investigation and modulation of collective behavior in active matter. Here, we review progress in the past five years in electrokinetic active systems and related topics in active matter with important fundamental research and applicative potential to be investigated using electrokinetic systems.  相似文献   

15.
Bacterial cellulose (BC), derived from kombucha scoby have extraordinary organoleptic properties suitable for development of leather-like materials. An improvement in physical and mechanical property is desirable for the practical applications. This work deals with the treatment of BC by incorporations of three different nanomaterials such as gold nanoparticles (AuNP), silver nanoparticles (AgNP) and graphene oxide (GO). Achieving combined benefits via synergic interactions of different nanomaterials is the major objective herein. While graphene oxide can influence some of the parameters related to mechanical properties, silver nanomaterials can offer antibacterial characteristics. Gold nano materials can bridge the BC/silver/graphene oxide as well as provide the desirable aesthetic colour. Different physical chemical and mechanical characteristics were studied in detail. For example, changes in morphology by imaging fiber network were studied using scanning electron microscopy. Fibre properties were studied by Small Angle X-Ray Scattering (SAXS) and X-Ray Diffraction (XRD). Elemental composition was studied by X-ray photoelectron spectroscopy (XPS) analysis and Raman analysis. The improvement of hydrophobicity was studied by Contact angle meter. Thermal analysis was performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). A Picture was provided in ESI to show the modified material's leather-like appearances.  相似文献   

16.
Interfacial layers have been widely applied to study the formation and stability of emulsion-based systems. However, the application of isolated interfaces to address digestibility of emulsions is often limited because of the complexity of experimental methods and results. This review summarizes the latest developments in analytical methods and literature data on effects of digestion on interfacial layers. Particular emphasis is given to understand the changes on interfacial magnitudes during oral, gastric, and duodenal digestion, either applied separately or sequentially. Limitations of interfacial aspects and key factors that influence emulsion microstructure in bulk and lipid digestion are identified. Understanding the behavior of interfacial layers upon gastrointestinal digestion promotes an accurate tracking of the physiological fate of emulsions.  相似文献   

17.
《Comptes Rendus Chimie》2019,22(8):574-584
Microwave-assisted extraction (MAE) at atmospheric pressure has been demonstrated as an efficient technology for the extraction of polymeric hemicelluloses from spruce sawdust. This technology was shown to be more efficient than conventional extraction. MAE leads to a high solubilization of wood and a selective extraction of hemicellulose polymers with high molecular weights. To optimize MAE, different treatment powers (125–573 W) of presoaked spruce sawdust in water and 1 M sodium hydroxide solution for a period of 60 min were tested. The yield of hemicellulose extraction increased with the microwave power in both mediums, but with a clear advantage for presoaked samples in basic medium. The characterization of extracted hemicelluloses has shown high extraction selectivity depending on the medium of impregnation of sawdust before MAE: High-molecular-mass acetylated galactoglucomannans (Mw ∼ 41 kDa) were isolated after presoaking in water and higher molecular mass arabinoglucoronoxylans (Mw ∼ 66 kDa) in basic medium.  相似文献   

18.
A combination of viscoelastic surfactants with nanoparticles gives a new class of functional self-assembled materials promising for a large variety of applications. Nanoparticles improve the rheological properties of these systems because of the incorporation into the network of entangled wormlike micelles by linking to micellar end-caps, thus leading to elongation or cross-linking of the micelles. The present article reviews recent studies of these hybrid systems. Mechanisms of the interaction of nanoparticles with wormlike surfactant micelles as well as factors favoring the enhancement of rheological properties of viscoelastic surfactants by added nanoparticles are discussed, providing ways for proper design of such systems in the future. It is shown that viscoelastic surfactants modified with nanoparticles display very attractive features for practical applications, in particular, for fracturing fluids in oil recovery.  相似文献   

19.
Paper-based analytical devices have become lately “must have” components in equipment and instrumental designed for point-of-care applications, especially when they are used in tandem with microfluidic platforms. Nowadays, paper-based electrochemical devices (PEDs) represent the first choice in the development of lab-on-a-chip biosensors because of their benefits in biomedical diagnosis in terms of simplicity, affordability, portability, and disposability. Moreover, cellulose is a biodegradable and biocompatible substrate, ideal for building disposable devices for use in remote locations or low-resource settings. Despite their low costs and simplicity, PEDs must face a tough challenge—meeting the affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users criteria. The latest achievements in microfluidic PEDs for clinical diagnosis will be critically discussed, putting emphasis on innovative assay formats and methods for surface modification.  相似文献   

20.
The electrochemical microRNA sensors are considered efficient, simple, and inexpensive analytical tools for the early diagnosis of cancer biomarkers. To enhance the sensitivity of the electrochemical genosensors toward detection of microRNAs, several amplification strategies based mainly on nanomaterials, enzymes, and oligonucleotides are investigated and discussed. This review highlights the main current achievements regarding the new promising and sensitive strategies for genosensors’ development, thus allowing for miroRNA analysis at the attomolar level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号