首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthetic Aperture Radar (SAR) data has been investigated to determine the relationship between burn severity and interferometric coherence at three sites affected by forest fires in a hilly Mediterranean environment. Repeat-pass SAR images were available from the TerraSAR-X, ERS-1/2, Envisat ASAR and ALOS PALSAR sensors. Coherence was related to measurements of burn severity (Composite Burn Index) and remote sensing estimates expressed by the differenced normalized burn ratio (dNBR) index. In addition, the effects of topography and weather on coherence estimates were assessed. The analysis for a given range of local incidence angle showed that the co-polarized coherence increases with the increase of burn severity at X- and C-band whereas cross-polarized coherence was practically insensitive to burn severity. Higher sensitivity to burn severity was found at L-band for both co- and cross-polarized channels. The association strength between coherence and burn severity was strongest for images acquired under stable, dry environmental conditions. When the local incidence angle is accounted for the determination coefficients increased from 0.6 to 0.9 for X- and C-band. At L-band the local incidence angle had less influence on the association strength to burn severity.  相似文献   

2.
Backscattering signatures of various Baltic Sea ice types and open water leads were measured with the helicopter-borne C- and X-band Helsinki University of Technology scatterometer (HUTSCAT) during six ice research campaigns in 1992–1997. The measurements were conducted at incidence angles of 23° and 45°. The HUTSCAT data were assigned by video imagery into various surface type categories. The ground data provided further classification of the HUTSCAT data into different snow wetness categories (dry, moist and wet snow). Various basic statistical parameters of backscattering signature data were used to study discrimination of open water leads and various ice types. The effect of various physical parameters (e.g. polarization, frequency, snow condition) on the surface type discrimination was investigated. The results from the data analysis can be used to help the development of sea ice classification algorithms for space-borne SAR data (e.g. Radarsat and Envisat). According to the results from the maximum likelihood classification it is not possible to reliably distinguish various surface types in the SAR images only by their backscatter intensity. In general, the best ice type discrimination accuracy is achieved with C-band VH-polarization σ° at an incidence angle of 45°.  相似文献   

3.
ABSTRACT

A Synthetic Aperture Radar (SAR) is an all-weather imaging system that is often used for mapping paddy rice fields and estimating the area. Fully polarimetric SAR is used to detect the microwave scattering property. In this study, a simple threshold analysis of fully polarimetric L-band SAR data was conducted to distinguish paddy rice fields from soybean and other fields. We analysed a set of ten airborne SAR L-band 2 (Pi-SAR-L2) images obtained during the paddy rice growing season (in June, August, and September) from 2012 to 2014 using polarimetric decomposition. Vector data for agricultural land use areas were overlaid on the analysed images and the mean value for each agricultural parcel computed. By quantitatively comparing our data with a reference dataset generated from optical sensor images, effective polarimetric parameters and the ideal observation season were revealed. Double bounce scattering and surface scattering component ratios, derived using a four-component decomposition algorithm, were key to extracting paddy rice fields when the plant stems are vertical with respect to the ground. The alpha angle was also an effective factor for extracting rice fields from an agricultural area. The data obtained during August show maximum agreement with the reference dataset of estimated paddy rice field areas.  相似文献   

4.
In this paper, we propose new approach: Boosted Multiple-Kernel Extreme Learning Machines (BMKELMs), a multiple kernel version of Kernel Extreme Learning Machine (KELM). We apply it to the classification of fully polarized SAR images using multiple polarimetric and spatial features. Compared with other conventional multiple kernel learning methods, BMKELMs exploit KELM with the boosting paradigm coming from ensemble learning (EL) to train multiple kernels. Additionally, different fusion strategies such as majority voting, weighted majority voting, MetaBoost, and ErrorPrune were used for selecting the classification result with the highest overall accuracy. To show the performance of BMKELMs against other state-of-the-art approaches, two L-band fully polarimetric airborne SAR images (Airborne Synthetic Aperture Radar (AIRSAR) data collected by NASA JPL over the Flevoland area of The Netherlands and Electromagnetics Institute Synthetic Aperture Radar (EMISAR) data collected by DLR over Foulum in Denmark) were considered. Experimental results indicate that the proposed technique achieves the highest classification accuracy values when dealing with multiple features, such as a combination of polarimetric coherency and multi-scale spatial features.  相似文献   

5.
Abstract

In preparation for the first European Space Agency (ESA) Remote Sensing(ERS-I) mission,a series of multitemporal, multifrequency, multipolarization aircraft synthetic aperture radar (SAR) data sets were acquired over the Bonanza Creek Experimental Forest near Fairbanks, Alaska in March, 1988. P-, L- and C-band data were acquired with the NASA/JPL Airborne SAR on five differentdays over a period of two weeks. The airborne data were augmented with intensiveground calibration data as well as detailed, simultaneous in situ measurements of the geometric, dielectric and moisture properties of the snow and forest canopy. During the time period over which the SAR data were collected, the environmental conditions changed significantly; temperatures ranged from unseasonably warm (I to 9°C) to well below freezing (-8 to - 15°C), and the moisture content of the snow and trees changed from a liquid to a frozenstate. The SAR data clearly indicate the radar return is sensitive to these changing environmental factors and preliminary analysis of the L-band SAR data shows a 0·4 to 5·8dB increase (depending on polarization and canopy type) in the radar cross section of the forest stands under the warm conditions relative to the cold. These SAR observations are consistent with predictions from a theoretical scattering model. These preliminary results are presented to illustrate the opportunity afforded by the ERS-l SAR to monitor temporal changes in forest ecosystems.  相似文献   

6.
Snow cover and glaciers are sensitive indicators of the environment. The vast spatial coverage of remote sensing data, coupled with the tough conditions in areas of interest has made remote sensing a particularly useful tool in the field of glaciology. Compared to optical images, synthetic aperture radar (SAR) data are hardly influenced by clouds. This is important because glacial areas are usually under cloud cover.The Dongkemadi glacier in the Qinghai-Tibetan plateau was selected as the study area for this paper. We use polarimetric SAR (PolSAR) image for classification on and around the glacier. The contrast between ice and wet snow is remarkable, but it is difficult to distinguish the ice from the ground on SAR images due to similar backscatter characteristics in former research. In our study, we found that this distinction can be achieved by target decomposition. Support Vector Machines (SVMs) are performed to classify the glacier areas using the selected features. The glacial areas are classified into six parts: wet snow, ice, river outwash, soil land, rocky land and others. The PolSAR-Target decomposition-SVMs (PTS) method is proven to be efficient, with an overall classification accuracy of 91.1% and a kappa coefficient of 0.875. Moreover, 86.63% of the bare ice and 96.76% of the wet snow are correctly classified. The classification map acquired using the PTS method also helps to determine the snow line, which is an important concept in glaciology.  相似文献   

7.
During the August 2002 Elbe river flood, different satellite sensor data were acquired, and especially Envisat Advanced Synthetic Aperture Radar (ASAR) data. The ASAR instrument was activated in Alternating Polarization (AP) and Image (IM) modes, providing high resolution datasets. Thus, the comparison with a quasi‐simultaneous ERS‐2 scene enables the evaluation of the contribution of polarization configurations to flood boundary delineation. This study highlights the increased capabilities of the Envisat ASAR instrument in flood mapping, especially the benefit of combining like‐ and cross‐polarizations for rapid mapping within a crisis context.  相似文献   

8.
ABSTRACT

The complex, dynamic and narrow boundaries between vegetation types make wetland mapping challenging. Hereafter the case study of the Hamoun-e-Hirmand wetland is considered by analysing eight Synthetic Aperture Radar (SAR) Images acquired in dry and wet periods with three wavelengths (X-band ~ 3 cm, C-band ~ 6 cm, and L-band ~ 25 cm), three polarizations (HH, VV and VH), and four incidence angles (22°, 30°, 34° and 53°). Then, the Support Vector Machine (SVM) classification method was applied to classify TerraSAR-X, Sentinel-1, and ALOS-PALSAR images. The final wetland land cover map was created by combining the classification results obtained from each sensor. In the case in question, results show that TerraSAR-X (X-band, HH-53°) and Sentinel-1 data (C-band, VV-34°) were useful for determining the flooded vegetation area in the wet period. This is crucial for the conservation of water bird habitats since flooded vegetation is an ideal environment for the nesting and feeding of water birds. PALSAR data (L-band in both HH and VH polarizations, 30°) were capable of separating the classes of vegetation density in the wetland. In the dry period, Sentinel-1 (VV and VH, 34°) and TerraSAR-X (HH, 22° and 53°) had higher potential in land cover mapping than PALSAR (HH and VH, 30°). Based on these results, Sentinel-1 in VV and VH provides the highest ability to discriminate between dry and green plants. TerraSAR-X is better for separating meadow and bare land. The results obtained in this paper can reduce the ambiguity in selecting satellite data for wetland studies. The results can also be used to produce more accurate data from satellite images and to facilitate wetland investigation, conservation and restoration.  相似文献   

9.
Incidence angle is one of the most important imaging parameters that affect polarimetric SAR (PolSAR) image classification. Several studies have examined the land cover classification capability of PolSAR images with different incidence angles. However, most of these studies provide limited physical insights into the mechanism how the variation of incidence angle affects PolSAR image classification. In the present study, land cover classification was conducted by using RADARSAT-2 Wide Fine Quad-Pol (FQ) images acquired at different incidence angles, namely, FQ8 (27.75°), FQ14 (34.20°), and FQ20 (39.95°). Land cover classification capability was examined for each single-incidence angle image and a multi-incidence angle image (i.e., the combination of single-incidence angle images). The multi-incidence angle image produced better classification results than any of the single-incidence angle images, and the different incidence angles exhibited different superiorities in land cover classification. The effect mechanisms of incidence angle variation on land cover classification were investigated by using the polarimetric decomposition theorem that decomposes radar backscatter into single-bounce scattering, double-bounce scattering and volume scattering. Impinging SAR easily penetrated crops to interact with the soil at a small incidence angle. Therefore, the difference in single-bounce scattering between trees and crops was evident in the FQ8 image, which was determined to be suitable for distinguishing between croplands and forests. The single-bounce scattering from bare lands increased with the decrease in incidence angles, whereas that from water changed slightly with the incidence angle variation. Consequently, the FQ8 image exhibited the largest difference in single-bounce scattering between bare lands and water and produced the fewest confusion between them among all the images. The single- and double-bounce scattering from urban areas and forests increased with the decrease in incidence angles. The increase in single- and double-bounce scattering from urban areas was more significant than that from forests because C-band SAR could not easily penetrate the crown layer of forests to interact with the trunks and ground. Therefore, the FQ8 image showed a slightly better performance than the other images in discriminating between urban areas and forests. Compared with other crops and trees, banana trees caused stronger single- and double-bounce scattering because of their large leaves. As a large incidence angle resulted in a long penetration path of radar waves in the crown layer of vegetation, the FQ20 image enhanced the single- and double-bounce scattering differences between banana trees and other vegetation. Thus, the FQ20 image outperformed the other images in identifying banana trees.  相似文献   

10.
In anticipation of X-band polarimetric Synthetic Aperture Radar (SAR) data from future sensors, we investigated the potential of X-band fully polarimetric data for discriminating between the principal classes present in a study site near Avignon, France. Decomposition and analysis techniques have been applied to a dataset acquired by the ONERA airborne RAMSES (Radar Aéroporté Multi-Spectral d'Etude des Signatures) SAR. Results show that X-band provides some discrimination capability. The polarimetric parameters, entropy and α-angle, show clearly that these signature classes are grouped into five clusters corresponding to physical scattering characteristics. The introduction of the anisotropy parameter does not increase our ability to distinguish between different classes whose clusters are in the same entropy/α-angle zone. The correlation observed between the radar signal and the surface roughness over bare soils is very low.  相似文献   

11.
We present ERS-l Synthetic Aperture Radar (SAR) backscatter measurements and scattering model calculations based on in situ data for thin Arctic sea ice covered with frost flowers, rough saline snow, or slush. The data were acquired in September–October 1991 during the ARCTIC–91 expedition when the air temperature dropped from O°C to –16°C. The ERS–I SAR signatures have a large variability and change rapidly due to environmental conditions. Rough and wet saline snow gave the highest backscattering coefficient of –6dB, whereas smooth slush gave the lowest of –16dB. Newly formed frost flowers gave an intermediate value of –14dB. Application of the backseattering model shows that surface scattering dominates in all cases, except possibly for new frost flowers. Two cases were found where the measured surfaces were too rough for the single scattering model to be used, which calls for multiple scattering effects to be included. Discrepancies between the model and measurements in the remaining cases were in general small or could be explained by inadequate sampling techniques.  相似文献   

12.
In this study we examine the utility of a three-component scattering model to quantify the sensitivity of radar incidence angle over snow-covered landfast first-year sea ice (FYI) during the late winter season. This three-component scattering model is based on (1) surface scattering contributed from the snow-covered FYI (smooth-ice (SI), rough-ice (RI), and deformed-ice (DI) types); (2) volume scattering contributed from snow layers which consist of enlarged snow grains, elevated brine volume, and preferential orientation of snow grains relative to radar look direction, as well as the underlying sea ice; and (3) double-bounce scattering contributed from ice ridges and ice fragments. This study uses RADARSAT-2 C-band polarimetric synthetic aperture radar (POLSAR) data acquired on 15 and 18 May 2009 for Hudson Bay, near Churchill, during late winter with surface air temperatures ≤?8°C at two different incidence angles (29° and 39°). The three-component scattering model is used to discriminate between snow-covered smooth, rough, and deformed FYI. The model shows enhanced discrimination at an incidence angle of 29°, compared with an incidence angle of 39°. The model is then used to quantify the sensitivity of radar incidence angle to each of the three scattering contributors. The results show that the relative fraction of surface scattering dominates for all three FYI types (SI ≈ 77.3%; RI ≈ 66.0%; and DI ≈ 61.1%) at 29° and decreases with increasing incidence angle and surface roughness. Volume scattering is found to be the second dominant mechanism (SI ≈ 19.1%, RI ≈ 32.2%, and DI ≈ 37.4% at 29° and SI ≈ 28.3%, RI ≈ 41.0%, and DI ≈ 49.5% at 39°) over snow-covered FYI and it increases with incidence angle and surface roughness. The double-bounce scattering contribution is low for all FYI types at both incidence angles.  相似文献   

13.
Snow cover is an important parameter for hydrological modelling and climate change modelling. Various methods are available only for wet snow-cover mapping using conventional synthetic aperture radar (SAR) data. Total snow (wet + dry) cover mapping with SAR data is still a topical research area. Therefore, incoherent target decomposition theorems have been implemented on fully polarimetric SAR data to characterize the scattering of various targets. Further classification techniques – both unsupervised and supervised – have been applied for accurate mapping of total snow cover. For this purpose, Advanced Land Observing Satellite – phased array-type L-band SAR (ALOS–PALSAR) data (12 May 2007) have been analysed for snow classification of glaciated terrain in and around Badrinath region in Himalaya. An ALOS-Advanced Visible and Near Infrared Radiometer (AVNIR)-2 image (6 May 2007) was also used to provide assistance in the selection of different training classes. It has been found that the application of incoherent target decomposition theorems such as H/A/α and four-component scattering mechanism models are good for extracting the desired information of snow cover from fully polarimetric PALSAR data. Finally, based on these target decomposition theorems and the Wishart classifier, PALSAR data have been classified into snow or non-snow cover, and the user accuracy of snow classes was found to be better than the user accuracy of other classes. Hence, the application of incoherent target decomposition theorems with full polarimetric ALOS-PALSAR data is useful for snow-cover mapping.  相似文献   

14.
The estimation of geophysical parameters from Synthetic Aperture Radar (SAR) data necessitates well‐calibrated sensors with good radiometric precision. In this paper, the radiometric calibration of the new Advanced Synthetic Aperture Radar (ASAR‐ENVISAT) sensor was assessed by comparing ASAR data with ERS‐2 and RADARSAT‐1 SAR data. By analysing the difference between radar signals of forest stands, the results show differences of varying importance between the ASAR on the one hand, and the ERS‐2 and the RADARSAT‐1 on the other. For recent data acquired at the end of 2005, the difference varies from ?0.72 to +0.72 dB, with temporal variations that can reach 1.1 dB. For older data acquired in 2003 and 2004, we observe a sharp decrease in the radar signal in the range direction, which can attain 3.5 dB. The use of revised calibration constants provided recently by the European Space Agency (ESA) significantly improves the results of the radiometric calibration, where the difference between the ASAR and the other SARs will be lower than 0.5 dB.  相似文献   

15.
Disturbed forests may need decades to reach a mature stage and optically-based vegetation indices are usually poorly suited for monitoring purposes due to the rapid saturation of the signal with increasing canopy cover. Spaceborne synthetic aperture radar (SAR) data provide an alternate monitoring approach since the backscattered microwave energy is sensitive to the vegetation structure. Images from two regions in Spain and Alaska were used to analyze SAR metrics (cross-polarized backscatter and co-polarized interferometric coherence) from regrowing forests previously affected by fire. TerraSAR-X X-band backscatter showed the lowest sensitivity to forest regrowth, with the average backscatter increasing by 1-2 dB between the most recent fire scar and the unburned forest. Increased sensitivity (around 3-4 dB) was observed for C-band Envisat Advanced Synthetic Aperture (ASAR) backscatter. The Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) L-band backscatter presented the highest dynamic range from unburned to recently burned forests (approximately 8 dB). The interferometric coherence showed low sensitivity to forest regrowth at all SAR frequencies. For Mediterranean forests, five phases of forest regrowth were discerned whereas for boreal forest, up to four different regrowth phases could be discerned with L-band SAR data. In comparison, the Normalized Difference Vegetation Index (NDVI) provided reliable differentiation only for the most recent development stages. The results obtained were consistent in both environments.  相似文献   

16.
The presence of snow cover affects the regional energy and water balance, thus having a significant impact on the global climate system. Temporal knowledge of the onset of snow melt and snow water equivalent (SWE) values are important variables in the prediction of flooding, as well as water resource applications such as reservoir management and agricultural activities. Microwave remote sensing techniques have been effective for monitoring snow pack parameters (snow extent, depth, water equivalent, wet/dry state). Coincident ground data, airborne polarimetric C-band (5.3 GHz) Synthetic Aperture Radar (SAR) and passive microwave radiometer data (19, 37 and 85 GHz) were collected on four dates (1 December 1997, 6 March 1998, 12 March 1998 and 9 March 1999) over two flight lines in Eastern Ontario, Canada. The multitemporal, multi-sensor data were analysed for changes in SAR polarimetric signatures and microwave brightness temperatures as a function of changing snow pack parameters. Results indicate that certain parameters such as linear polarizations and pedestal height are sensitive to changes in snow pack parameters, and respond differently to various snow conditions. SWE values derived from the passive microwave brightness temperatures compare well with ground measurements, with the exception of low snow volume and in the presence of significant ice layers.  相似文献   

17.
A polarimetric scattering model is proposed to exploit quad-polarimetric synthetic aperture radar (SAR) data to both observe surfactants at sea and provide the first information on the spatial variability of their damping properties. The model is based on the departure from the clean sea surface Bragg/tilted Bragg scattering mechanism. This departure is shown to be a function of the surfactant’s characteristics, and therefore, it is exploited to map them. Case studies of polarimetric SAR data collected during the Deepwater Horizon oil spill in Gulf of Mexico are examined. The approach is robust enough to successfully exploit both L-band airborne and C-band satellite SAR data. This is of paramount importance, even operationally, since it makes this physical approach cross-sensors and, therefore, suitable to exploit all the operational polarimetric missions, thus allowing a denser spatial/temporal coverage.  相似文献   

18.
This paper presents simulation results of the backscattering coefficient, in order to discriminate between wet snow and dry snow covers sensed at 5.3 GHz by the RADARSAT Synthetic Aperture Radar (SAR) sensor. Snow-field measurements coinciding with the RADARSAT SAR overpasses are used to explore and set out optimal conditions for wet snow detection, as a function of the sensor incidence angles. The conditions concern wet snow surface characteristics, mainly the roughness represented by the surface slope m and the volumetric liquid water content, snwc (vol.%). Based on the 3-dB threshold value used in several wet snow detection algorithms, the results show that in order to be discriminated from dry snow covers, wet snow surfaces must be characterized as: (a) m≤0.058 and snwc≤1.1, if the sensor operates in the S1 mode (20-27° incidence angle range), and (b) m≤0.082 and snwc≤3.0, if the observations are made in the S7 mode (45-49° incidence angle range). For the identification of a very wet snow, it is also shown that the S7 mode of RADARSAT SAR sensor is more suitable than the S1 mode. The latter, however, provides better discrimination for low values of the snow liquid water content. Furthermore, for wet snow detection based on modeling, the present paper demonstrates the importance of using the appropriate methodology to assess the dielectric constant of the background medium.  相似文献   

19.
针对传统的极化SAR滤波方法图像中城镇区域和植被区域地物在滤波中易被混淆, 导致滤波后图像中地物边缘保持效果下降的问题, 提出了一种增强的保持极化散射特性的滤波算法。利用一种增强的四分量极化分解方法获取更加精确的地物散射机制, 并将散射机制信息引入滤波方法中, 使滤波算法中像素的散射机制更精确。增强的四分量极化分解方法引入了极化SAR数据的定向角补偿技术、一种新的体散射模型以及两种散射功率限制条件, 来改进Freeman-Durden分解的结果。理论分析和实验结果表明, 改进后的方法获取了比传统的极化SAR图像滤波算法更加理想的计算结果。  相似文献   

20.
The potential of synthetic aperture radar (SAR) in monitoring soil and vegetation parameters is being evaluated in extensive investigations, worldwide. A significant experiment on this subject, the Multi-sensor Airborne Campaign (MAC 91), was carried out in the summer of 1991 on several sites in Europe, based on the NASA/JPL polarimetric synthetic aperture radar (AIR-SAR). The site of Montespertoli (Italy) was imaged three times during this campaign at P-, L-, and C-band and at different incidence angles between 20° and 50°. Calibrated full polarimetric data collected over the agricultural area of this site have been analysed and a critical analysis of the information contained in linear and circular co-polar and cross-polar data has also been carried out. Here a guideline for the formulation of crop discrimination algorithms is suggested. It has been found that P-band data are rather effective only in discriminating broad classes of agricultural landscape, while finer detail can be obtained by integrating data at L- and C-bands. Indeed at L-band well developed ‘broad leaf’ crops can be separated from the others, whereas at C-band discrimination seems feasible in the case of moderate growth as well. Finally the sensitivity of backscattering coefficient to soil moiture and vegetation biomass is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号