首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
室内可燃气体泄漏后与空气形成混合气体,容易引发爆燃或爆炸等危险事故,考虑到居民常使用燃气种类有天然气和液化石油气,采用雷诺平均的N-S方程,k—ε湍流模型以及组分输运模型方程,利用CFD技术对二者在有限空间内的泄漏扩散过程进行模拟研究,并与实验结果相比较,对比分析二者在不同泄漏工况下的泄漏扩散规律,结果表明:在泄漏的初始时刻,天然气和液化石油气形成的爆炸危险区域分别在房间上部和下部;液化石油气泄漏后很快就会在整个房间形成爆炸危险区域;通风口加速了泄漏天然气的排放,但房间内始终会存在一定厚度的爆炸危险区域。两种可燃气体在泄漏后形成的爆炸危险区域的分布差异,可为制定室内可燃气体危险事故的预防措施提供参考。  相似文献   

2.
燃气管道非稳态泄漏及扩散的模拟   总被引:2,自引:0,他引:2  
为了得到准确可靠的燃气泄漏扩散规律及事故的危险范围,基于对燃气管道实际泄漏过程特点的分析,结合湍流扩散微分方程,分别建立了非稳态泄漏及扩散模型,并分析了其求解过程.以实例为基础,讨论并分析了泄漏相对孔径、气源切断时间、风速、扩散距离以及大气稳定度等对泄漏扩散浓度范围的影响.同时,针对泄漏扩散的中毒、火灾爆炸事故可能性危险范围给予了讨论和分析.研究结果将为控制和降低燃气泄漏事故的危害性提供理论参考.  相似文献   

3.
目的分析燃气流速及室外风速变化对建筑物内燃气泄漏火灾蔓延的影响.为火灾发生时火场内人员逃生及灭火救援提供理论指导.方法使用标准κ—ε湍流模型和非预混燃烧模型,对民用建筑室内燃气泄漏火灾蔓延情况进行数值模拟.结果得到了不同边界条件下室内燃气火灾的温度场及组分浓度场的分布情况,并对结果进行了对比、分析.结论当燃气流速在0.5~2.0m/s之间时,火灾热烟气层最慢将在5min之内降至距地面2m处,将对火灾中人员生命安全造成很大的威胁.当可燃物较少的情况下,室外风的吹入将对室内燃气泄漏火灾有稀释作用.  相似文献   

4.
城镇燃气管道泄漏扩散模型及数值模拟   总被引:2,自引:2,他引:0  
城镇燃气管道的分布区域人口及建筑众多,燃气管道一旦发生泄漏,将有可能造成重大的财产损失 甚至人员伤亡。因此,为了量化城镇燃气泄露危害,针对管道不同的破坏情况及气源建立了燃气泄漏各种源模型以 及扩散模型,并且建立了燃气管线动态泄漏扩散模型及伤害性危险范围。对第三方破坏所造成的城镇燃气管道泄 漏模型进行了模拟,采用CFD技术对管道泄漏燃气的扩散进行模拟研究,获得了泄漏气体的扩散数值模拟结果,为 城镇燃气管道安全运行提供了理论依据。  相似文献   

5.
开放式厨房中的燃气泄漏后,研究室内不同时间段的危险程度和燃气扩散规律,可以为相关建筑规范的制定及开放式厨房的推广提供理论依据.文章基于仿真模拟软件,数值模拟了采用开放式厨房和闭式厨房的同一房屋的燃气泄漏,得到了室内燃气泄漏扩散的一般规律.结果表明:发生燃气泄漏后,120 min时闭式厨房内就会达到爆炸下限;开放式厨房之...  相似文献   

6.
目的分析两种燃气流量下不同室外风速对工业用燃气泄漏火灾蔓延的影响,为火灾发生时的灭火救援及人员逃生提供理论指导.方法使用标准κ-ε湍流模型和非预混燃烧模型,将室外风速从0.1m/s逐渐增加到4.5m/s,对工业建筑物室内燃气泄漏火灾的蔓延情况进行数值模拟.结果选取距地面2m水平截面的中心点和在房间中面对房间出口门框右上角一点作为测点,得到了不同边界条件下火场内两测点的温度及烟气组分浓度的实时曲线,并对结果进行了对比、分析,结论对于有室外风流参与的工业燃气泄漏火灾,风速越大,室内温度及CO2量提升的也就越快,火灾烟气蔓延将呈现特殊的规律性,对火灾中人员生命安全造成很大的威胁.  相似文献   

7.
障碍物对可燃气体泄漏扩散影响的数值模拟   总被引:1,自引:0,他引:1  
室内可燃气体泄漏容易引发危险事故,考虑障碍物对可燃气体泄漏扩散的影响,采用雷诺平均的N—S方程,k—ε湍流模型方程以及组分输运模型方程,通过改变泄漏速率、泄漏位置等参数对障碍物影响下可燃气体泄漏扩散进行了数值模拟。结果表明:障碍物存在阻碍了可燃气体的泄漏扩散,易使泄漏气体堆积,增大危险事故发生的可能性;不同泄漏速率下得到的浓度场分布相似;泄漏位置不同得到的危险区域不同,泄漏口与出口异侧、位置越低、距离障碍物距离越小,房间内发生危险事故的可能性越大。模拟结果可为制定室内可燃气体危险事故的预防措施提供参考。  相似文献   

8.
燃气连续性泄漏扩散规律的研究   总被引:1,自引:0,他引:1  
燃气的泄漏和扩散会对人员和环境造成极大的危害,为此,利用CFD方法对燃气连续性泄漏后的扩散现象进行了数值模拟.以丙烷为例,着重研究了障碍物宽度、燃气泄漏速度、风速、泄漏源与障碍物的距离等因素对燃气的扩散过程的影响.在大量数值模拟数据的基础上,经分析得到了燃气在扩散过程中遇障碍物阻挡时的分布规律.  相似文献   

9.
液化石油气是一种危险性气体,一旦发生泄漏,所造成的后果是非常严重的,所以其安全问题很重要。针对液化石油气的特点,建立有限空间内部发生泄漏扩散的物理模型,并对液化石油气泄漏扩散的过程进行了数值模拟。通过模拟结果分析了其扩散过程的内部流场,并对比了相对湿度不同时其扩散过程的变化规律。结果表明,由于受空气中涡流移动的影响,泄漏点两侧气体扩散的速度矢量由起初的一侧高另一侧低变为一侧低另一侧高;风速增大,加快涡流的产生和移动速度,使C3H8的质量分数分布变化更剧烈;相对湿度较大时气体的下降速度比湿度小时更快,在低于泄漏点高度的平面内,湿度增大,C3H8的质量分数也变大,缩短液化石油气报警器的报警时 间。  相似文献   

10.
管道燃气泄漏过程动态模拟的研究   总被引:15,自引:0,他引:15  
提出了管道燃气泄漏量的计算方法。根据射流原理,对燃气泄漏过程的速度场与浓度场进行了动态模拟计算。根据模拟结果对泄漏的局部危险性进行了评价。  相似文献   

11.
给出了天然气管道泄漏几何区域图形,建立了天然气泄漏控制方程,基于控制体积原理和多孔介质理论,利用计算流体力学软件对埋地天然气管道泄漏过程进行了数值模拟。通过模拟,得到了天然气在土壤和空气中泄漏浓度分布,并分析了风速对天然气组分的扩散影响规律,确定了安全区域,为天然气管道泄漏应急救援和安全管理提供了理论依据。  相似文献   

12.
采用Fluent软件对油库罐区危险重质气体不同工况下的泄漏扩散过程进行了数值模拟研究。结果表明:卧式储罐垂直方向发生泄漏时,重气云团在地表附近重力沉降,气体浓度上升明显,整个罐区处于爆炸极限范围内,危险性较大;罐组边缘位置的储罐发生泄漏时,气体扩散速度快,但浓度较低;罐组中间位置的储罐发生泄漏时,气体扩散速度慢,容易达到爆炸浓度极限。当风速为0.95 m/s时,重质气体的扩散速度随着风速的增加而增加,气体浓度上升明显;当风速达到1.7 m/s时,气体浓度达到峰值,然后随着风速的继续增大,气体浓度慢慢降低。  相似文献   

13.
随着我国天然气事业的发展,天然气管道规模也在不断扩大,与此同时也带来了安全上的隐患,城市天然气管道泄漏事故频繁发生,严重影响了城市居民的生命及财产安全。主要介绍了城市天然气管道泄漏数值仿真和数值模拟的基本理论,考虑泄漏过程中风场对泄漏的影响,分析了近地面处风场的变化,建立了埋地天然气管道泄漏模型。设定泄漏扩散发生在大气环境,选取CFD软件对网格进行划分并进行局部加密,进行了风场的稳态模拟。在风场达到稳态后,改变后处理边界条件,再对泄漏进行瞬态模拟,得出天然气泄漏扩散随时间的变化规律,定量分析了风速对泄漏扩散的影响。结果表明,建筑物对风场存在干扰,在泄漏过程中气体聚集在近地面及贴近建筑物周围,随着风速的增加,稳态扩散高度降低,但风场对水平扩散的影响较小,风速越大泄漏气体稀释效果越明显,所造成的危险区域越小。  相似文献   

14.
针对天然气管道不同损伤过程中的泄漏扩散问题,利用FLUENT软件,建立CFD仿真模型,研究了泄漏口大小对天然气泄漏扩散范围的影响。以山区与城镇交界处的天然气埋地管道为例,考虑风速随高度的变化和关闭阀门后泄漏率随时间的变化,对天然气泄漏扩散进行数值模拟,编写导入FLUENT的UDF程序并对风速和泄漏率进行了修正。实例计算结果表明,扩散范围随着泄漏口的增大而变大,在泄漏口直径为6.35、25.40mm和101.60mm时,天然气爆炸下限距地面高度分别可达92、122m和408m,天然气爆炸下限下风向距泄漏口的水平距离分别可达322、770m和1 291m;由于天然气受管道上层土壤的影响而损失大量湍能,因此泄漏气体在地表和土壤中扩散时,泄漏气体在地表的扩散范围大于在土壤中的扩散范围,其中泄漏口直径为101.60mm时扩散范围最大,天然气爆炸下限下风向距泄漏口的水平距离在地表和土壤中最大分别可达80m和105m。  相似文献   

15.
采用VOF(Volume Of Fluid)多相流模型对海底管线天然气泄漏过程进行了数值模拟研究,通过实验验证了数学模型的准确性和可靠性.结果表明:在泄漏初期天然气上升的同时也会横向扩散并逐渐形成直径为1.92m一个气团,随后气团脱离泄漏口继续向上运动,气团将分裂为多个小气团,海水将占据小气团之间的空隙.气团两侧会产生回流,气液两种流体之间形成强烈的湍流运动,加强天然气和海水的混合,造成天然气泄漏过程中气液两相之间的相互渗透.泄漏流量的增大将导致天然气从泄漏口运动到自由表面所需时间的减小,特别是在流量较小时,下降幅度较为迅速.  相似文献   

16.
针对城镇埋地天然气管道泄漏扩散过程, 考虑多建筑物条件下不同组分、 不同浓度的气体扩散规律, 利用计算流体力学( CFD) 软件建立埋地管道泄漏扩散过程的三维物理模型, 将环境风场和泄漏速率以用户自定义函数形式引入边界条件中, 将模拟过程分为环境风场的稳态模拟和泄漏扩散的瞬态模拟两步, 又将泄漏扩散过程分为持续泄漏扩散和管道阀门关闭后的泄漏扩散两个阶段, 分析天然气的泄漏扩散规律。结果表明, 环境风场的稳态模拟是十分必要的, 建筑物附近流场存在三个低速区, 建筑物边缘存在较大的速度梯度; 天然气的持续泄漏扩散阶段呈现土壤层局限扩散、 上游低速区积聚、 气云浮升、H2S的沉积扩散等特征, 在阀门关闭后的阶段呈现气体扩散延续性、 气云由上而下消散等特点; 在本文工况条件下, H2S比CH4的扩散范围大, 消散时间晚, 危险性更大。  相似文献   

17.
对含硫天然气管道泄漏扩散进行模拟研究,在不同风速下对比分析了计算区域内障碍物形状、障碍物坡度对泄漏气体扩散过程的影响规律,并模拟了不同条件下H2S组分的安全区域。结果表明,障碍物的存在使泄漏气体在风力作用下堆积在障碍物的迎风面,障碍物的形状改变泄漏气体的运动路径。当障碍物为无坡度障碍物(建筑物)时,泄漏气体的扩散高度增大,且在水平方向的传输被阻碍;当障碍物为有坡度障碍物(山体)时,泄漏气体在水平方向的扩散距离增大,且在外界风力达到一定速度之后,泄漏气体绕过障碍物在背风区扩散时开始向下沉降,导致地面附近的安全区域范围减小。减小障碍物坡度,风速较小时对泄漏气体的扩散无影响,风速较大时泄漏气体将障碍物包围并在近地面处扩散;增大障碍物坡度,泄漏气体的扩散规律与无坡度障碍物(建筑物)存在时相似。模拟结果可为含硫天然气泄漏事故的处理提供参考。  相似文献   

18.
根据自激振荡脉冲射流理论与壁面振动减阻理论,对变径管及天然气增输器管道内天然气流动情况进行了数值模拟及分析。结果表明,天然气流经增输器时,在碰撞壁处压力波动较大,存在径向环流,引起壁面的径向振动;与普通变径管相比,增输器出口处的压强与入口相比有明显的降低,湍动能变化较大。在相同工况条件下,经增输器后压力降低,管道输气量显著增加。  相似文献   

19.
架空天然气管道泄漏扩散数值模拟   总被引:1,自引:3,他引:1  
针对天然气管道穿孔泄漏扩散问题,结合有限容积法,建立了天然气管道不同泄漏位置的CFD仿真模型,分别对天然气管道上部、下部、迎风侧及背风侧等4种工况的泄漏扩散进行了数值模拟。研究结果表明,下部泄漏比上部泄漏气体更贴近地面且不易扩散,且横向危险范围也比上部泄漏大30~70m;迎风侧泄漏与背风侧泄漏情况相似,但迎风侧泄漏危险区域的纵剖面面积更大,更危险。应用数值方法模拟管道穿孔扩散问题,给出了不同工况下的泄漏范围,为天然气管道泄漏的安全输送及安全抢修提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号