首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the carbon nanoflakes (CNFs) fabricated by sputtering were chosen as the field emission emitters because of their very sharp and thin edges which are potentially good electron field emission sites. The as-deposited CNFs were annealed in the furnace under hydrogen atmosphere. The results showed that the optimum field emission properties with smaller turn-on field and larger current density were obtained at annealing temperature of 600 °C for 10 min. The hydrogen thermal annealing has chemical etching on the surface of the CNFs and produces appropriate emission site density to increase the emission current density. The turn-on field was reduced from 6.7 to 5.8 V/μm and electric current density was increased from 22 to 187 μA/cm2 under 8 V/μm after hydrogen thermal annealing.  相似文献   

2.
Enhanced electron field emission (EFE) behavior of a core–shell heterostructure, where ZnO nanorods (ZNRs) form the core and ultrananocrystalline diamond needles (UNCDNs) form the shell, is reported. EFE properties of ZNR‐UNCDN core–shell heterostructures show a high emission current density of 5.5 mA cm?2 at an applied field of 4.25 V μm?1, and a low turn‐on field of 2.08 V μm?1 compared to the 1.67 mA cm?2 emission current density (at an applied field of 28.7 V μm?1) and 16.6 V μm?1 turn‐on field for bare ZNRs. Such an enhancement in the field emission originates from the unique materials combination, resulting in good electron transport from ZNRs to UNCDNs and efficient field emission of electrons from the UNCDNs. The potential application of these materials is demonstrated by the plasma illumination measurements that lowering the threshold voltage by 160 V confirms the role of ZNR‐UNCDN core–shell heterostructures in the enhancement of electron emission.  相似文献   

3.
Electron field emission from nano‐emitter without limitation and residual‐gas ionisation? The article is dealing with hyper giant conductivity at room temperature, as published in this journal. The novel material property was explained with a field‐emission measurement of a nano‐emitter. The apparently measured current density of 1.8 GA/cm2 has been transferred to the emitter material. But the current density of electron field emission is limited in the range of kA/cm2 (FN theory), and so other emission mechanism will be analysed, too. Especially the triplepoint (metal‐insulator‐vacuum) is an excellent field emitter and active over the entire length of cathode edge. Secondary electron emission is increased by the increasing of residualgas ionization and transition to gas discharge will be accelerated. Also, it must be considered that nanorods have a material‐independent quantum resistance in relation to h/e 2. There are enough criteria for a metrological and scientifically reviewing.  相似文献   

4.
In this paper, an ultra thin sheet-like carbon nanostructure, carbon nanoflake (CNF), has been effectively fabricated by RF sputtering on Si substrate without any catalyst or special substrate pre-treatment. The CNFs were chosen to be the field emission emitters because of their very sharp and thin edges which are potentially good electron field emission sites. The effect of deposition parameters such as substrate temperature, gas flow ratio and RF power on the field emission properties is discussed in detail. The sheet-like structures with thickness of about 10 nm or less stand on edge on the substrate and have a defective graphite structure. The field emission properties of the sample deposited at the optimum deposition conditions are turn-on field of 5.5 V/μm and current density of 1.4 mA/cm2 at 11 V/μm. Considering the inexpensive manufacturing cost, lower synthesis temperature and ease of large-area preparation, the CNFs with low turn-on field deposited by RF sputtering might have a potential application in field emission devices.  相似文献   

5.
Carbon nanotubes (CNT) have been highlighted as possible candidates for field-emission emitters and vacuum nanoelectronic devices. In this article, we studied the effect of acid treatment of CNTs on field emission from carbon nanotube field emitter arrays (FEAs), grown using the resist-assisted patterning process (RAP). The emission current densities of as grown CNT-FEAs and those which were later immersed in hydrofluoric acid (HF) for 20 s, were 19 μA/cm2 and 7.0 mA/cm2, respectively, when measured at an anode field of 9.2 V/μm. Hence, the emission current densities after HF treatment are 300 times larger than those of as grown CNT-FEAs. Also, it was observed that a very stable electron emission current was obtained after stressing the CNTs with an electric field of 9.2 V/μm for 800 min in dc-mode, where the emission current non-uniformity was 0.13%. The enhancement in electron emission after HF treatment appears to be due to the effect of fluorine bonding. Also, the electron emission characteristics and structural improvement of CNT-FEAs after HF treatment are discussed.  相似文献   

6.
Field emission studies are reported for the first time on layered MoS2 sheets at the base pressure of ~1 × 10?8 mbar. The turn‐on field required to draw a field emission current density of 10 μA/cm2 is found to be 3.5 V/μm for MoS2 sheets. The turn‐on values are found to be significantly lower than the reported MoS2 nanoflowers, graphene, and carbon nanotube‐based field emitters due to the high field enhancement factor (~1138) associated with nanometric sharp edges of MoS2 sheet emitter surface. The emission current–time plots show good stability over a period of 3 h. Owing to the low turn‐on field and planar (sheetlike) structure, the MoS2 could be utilized for future vacuum microelectronics/nanoelectronic and flat panel display applications.  相似文献   

7.
Large-area and homogeneous single-walled carbon nanotube (SWCNT) films have been deposited via arc discharge directly on glass substrate coated with a layer of indium tin oxide film. The characterization, by means of electron microscopy and Raman spectroscopy, shows that the as-grown films are uniformly woven and consist of SWCNT with diameters ranging from 0.82 to 1.15 nm. As a cathode material, the field emission test indicates the films have low turn-on field of ∼1.2 V/μm at 10 μA/cm2 emission current, and high emission intensity causing luminance of about 7000 cd/cm2 with fine uniformity. The best performing sample exhibits a constant degradation of less than 3% per hour at an emission current of around 1 mA. Measuring with the high voltage (2000 V) on the films for 2.0 h increased the field enhancement factor from 4500 to 5400 at the high field region. The results are of significance to the development of field emission display using nanoemitters.  相似文献   

8.
《Materials Letters》2005,59(14-15):1866-1870
Tetrapod-like zinc oxide (ZnO) nanoneedles were fabricated using a simple and economical method of rapid heating high purity zinc powders at 900 °C. No catalyst and vacuum were employed in the experiment. Field-emission measurements showed that the turn-on field of the synthesized tetrapod-like ZnO nanoneedles was as low as 1.8 V/μm at the emission current density of 1.0 μA/cm2 and the emission current density reached 1.0 mA/cm2 under an applied field of about 3.9 V/μm. The low turn-on field, high emission current density, and good electron emission stability make the ZnO nanoneedles one of the promising candidates for field-emission displays.  相似文献   

9.
Nitrogenated carbon nanotips (NCNTPs) with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition using methane, hydrogen and nitrogen as the reactive gases. The structures and compositions of the NCNTPs were studied by field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The XPS spectra reveal that nitrogen is incorporated into the carbon nanotips to form the NCNTPs under plasma condition. The Raman spectra and FESEM images show that the NCNTPs are amorphous structure and their morphologies change with the change in deposition conditions, respectively. The electron field emission (EFE) from the NCNTPs was measured and the EFE results indicate that the NCNTPs with the smooth surfaces and high density can emit a current density of 3 × 103 μA/cm2 at an electric field of 7.2 V/μm, which exhibits better EFE characteristic than the NCNTPs with the carbon nanowires on their surfaces due to small amount of oxygen adsorbed on the smooth surfaces of NCNTPs. According to the possible structures of nitrogen in sp2 cluster in rings, the EFE enhancement of the NCNTPs compared with pure carbon nanotips was studied. The high emission current density (3 × 103 μA/cm2) at low field (7.2 V/μm) suggests that the NCNTPs can serve as effective electron emission sources for numerous applications.  相似文献   

10.
The formation and transformation of local emission centers during field electron emission from a cesium-gold (CsAu) compound film on a tungsten point emitter has been studied. Stable electron emission from one center reaches a current density of ~108 A/cm2. The properties of emission centers change during the take-off of large electron currents and on heating of the emitter. The experimental data are interpreted assuming that the CsAu compound is decomposed by a narrow beam of current passing through the film, with the formation of a several-nanometer-thick gold column and the reverse process of CsAu compound recovery at the column boundaries due to the diffusion supply of cesium.  相似文献   

11.
An investigation was made of acoustic emission in silicon single crystals during passage of an electric current. It was observed that in the temperature range studied (T=300−450K) acoustic emission signals whose intensity increases with increasing dislocation density are excited in a static electric field. The acoustic emission of silicon single crystals with and without dislocations is compared. It is assumed that the acoustic emission in silicon is caused by the unpinning and migration of dislocations under the influence of the direct electric current and thermoelastic stresses. The activation energy of this process is estimated as E=0.53±0.05 eV during passage of a direct current of density j=2.8×105 A/m2. Pis’ma Zh. Tekh. Fiz. 25, 28–32 (February 12, 1999)  相似文献   

12.
Multiwalled carbon nanotubes (MWNTs) were synthesized using a hot filament assisted chemical vapor deposition (CVD) at the atmospheric pressure at a substrate temperature of 550 °C. The size of nanotubes was controlled by changing the size of catalyst particles. The structure and composition of these nanotubes were investigated using scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The electron field emission current of MWNTs was also measured. It was found that the nanotubes with smaller the diameter had higher the emission current levels though synthesis conditions except catalyst particles were the same. These as-grown MWNTs had emission current densities of 6.5 mA/cm2 and 2.5 mA/cm2 at 1 V/μm for 5-8 nm and 20 nm size carbon nanotube samples, respectively. The results indicated that the MWNTs synthesized had low emission threshold voltages and high emission current levels that are favorable properties for field emission-based display device applications.  相似文献   

13.
We have deposited diamond-like carbon (DLC) films by electrodeposition technique in methanol liquid. XPS showed the films mainly contain carbon. IR spectrum indicated that as-deposited films are hydrogenated carbon films, with the hydrogen mainly bonded to sp3 carbon. Raman measurement suggested that the films consisted of sp3 and sp2 carbon. The field emission (FE) property of DLC coated on Si has been measured. The field emission of DLC films started at an applied voltage of 160 V, compared with silicon tip arrays at 600 V, and an emission current of DLC films up to 55 A at 360 V was achieved.  相似文献   

14.
Issues pertaining to the effective solution of problems related to the creation of durable low-voltage field emission cathodes with developed working surface and high density of emission current are considered. Results of practical implementation of the concept of multielectrode field emission planar nanostructures based on diamond-like carbon are presented. High average current density (0.1–0.3 A cm–2) is ensured by the formation of a controlled zone of electrostatic field localization at the planar-edge structure. The working life of cathode samples reaches 700–3000 h due to several positive factors, such as the stabilizing properties of a diamond-like carbon film, protection of the emitter from ion bombardment, use of a system of ballast resistors, and low-voltage operation of submicron interelectrode gaps.  相似文献   

15.
Tellurium nanorods were grown on silicon (111) substrates by thermal evaporation. The synthesized Te nanorods were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), prior to the field emission investigations. The TEM image revealed that the nanorods are needle-like having diameter less than 20 nm and length in the range of 200-400 nm. The selected area electron diffraction (SAED) pattern and high resolution TEM micrographs clearly reveal the crystalline nature of the Te nanorods. The field emission studies were carried out in a planar diode (close proximity) configuration at background pressure of ∼1 × 10−9 mbar. An emission current density of ∼8.5 μA/cm2 has been drawn at an applied field of ∼3.2 V/μm. The Folwer-Nodhiem plot, showed a non-linear behaviour. The high value of field enhancement factor (β ∼ 1 × 104), estimated from the slope of the F-N plot, suggests that the emission is indeed from the nanometric tips of the Te nanorods. The emission current stability studied at the preset value ∼3.5 μA over duration of more than 3 h is found to be very good, suggesting the use of Te nanorods as promising electron source for field emission based micro/nano-electronic devices.  相似文献   

16.
Field emission from CVD diamond thin films deposited on silicon substrate has been studied. The diamond films were synthesized using hot filament chemical vapor deposition technique. Field emission studies of as-deposited and acid-treated films were carried out using ‘diode’ configuration in an all metal UHV chamber. Upon acid treatment, the field emission current is found to decrease by two orders of magnitude with increase in the turn-on voltage by 30%. This has been attributed to the removal of sp2 content present in the film due to acid etching. Raman spectra of both the as-deposited and acid-treated films exhibit identical spectral features, a well-defined peak at 1333 cm−1 and a broad hump around 1550 cm−1, signatures of diamond (sp3 phase) and graphite (sp2 phase), respectively. However upon acid treatment, the ratio (Id/Ig) is observed to decrease which supports the speculation of removal of sp2 content from the film. The surface roughness was studied using atomic force microscopy (AFM). The AFM images indicate increase in the number of protrusions with slight enhancement in overall surface roughness after acid etching. The degradation of field emission current despite an increase in film surface roughness upon acid treatment implies that the sp2 content plays significant role in field emission characteristics of CVD diamond films.  相似文献   

17.
Han Eol Lim 《Vacuum》2009,84(5):526-529
We have selectively fabricated carbon nanotubes (CNTs) emitter arrays with a micro mold in capillary (MIMIC) assisted process. The electron emitter growth site was fabricated by resist patterning using the MIMIC process. The pattern was uniformly transferred to the substrate and well aligned CNTs were grown. The emitter produces a turn-on field of 2.7 V/μm with a field emission current of 10 μA/cm2. The electron emission current can be controlled by emitter pattern width and pitch variation.  相似文献   

18.
Dependence on the performance characteristics of a field-emission diode with tangential current takeoff from thin-film nanodiamond/graphite (NDG) emitter on the design parameters has been studied. Thin-film NDG emitter structures were formed in the plasma of microwave low-pressure gas discharge. Field-emission current densities up to 20 A/cm2 at a voltage of 300 V were obtained. For the optimum diode design parameters, the tangential current takeoff scheme allows the threshold electric field strength for the onset of field emission to be decreased to less than half of the value typical of the planar field emission from the same NDG structures.  相似文献   

19.
We studied and compared field emission properties of two kinds of emitters of randomly oriented multi-wall carbon nanotubes (MWNTs), viz. continuous film emitter (CFE) and multi-emitter array (MEA). The CFE has a continuous film of MWNTs while the MEA consists of many equidistant small circular emitters. Both types of emitters were prepared by dispersing MWNTs over a titanium (Ti) film (for CFEs) or Ti circular islands (for MEAs) deposited on tantalum (Ta) followed by rooting of MWNTs into the Ti film or the Ti islands at high temperature. Emission properties of both types of emitters were analyzed with changing their emission areas. In case of the CFEs, current density decreased with an increase in emission area whereas consistent current densities were achieved from MEAs with different emission areas. In other words, the total emission current was achieved in proportion to the emission area in the case of MEAs. Additionally a high current density of 22 A/cm2 was achieved at an electric field of 8 V/μm from MEAs, which was far better than that obtained from CFEs. The high current density in MEAs was attributed to edge effect, in which higher emission current is achieved from the edge of film emitter. The results indicate that the field emission characteristics can be greatly improved if a cathode contains many small equidistant circular emitters instead of a continuous film. The outstanding stability of the CFE and the MEA has been demonstrated for 2100 and 1007 h, respectively.  相似文献   

20.
A room temperature fabrication method for the mass production of carbon nanotube (CNT) field emission micro-cathode arrays is reported. The technique combines electroplating of a CNT/Ni composite and micro-machining. This method combines the advantages of direct growth and screen printing conventionally used to fabricate such structures and avoids their disadvantages. Due to its integration and room temperature processing, the technique is proven to be advantageous in mass production and low cost. Results of field emission testing show that the CNT micro-cathodes have excellent field-emission properties, such as high current density (15.7 mA/cm2), field enhancement factor (2.4 × 106/cm), and good stability (109 h for 10% degradation of current density from 400 μA/cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号