首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The declining light curve of the optical afterglow of gamma-ray burst (GRB) GRB000301C showed rapid variability with one particularly bright feature at about t − t 0=3.8 d. This event was interpreted as gravitational microlensing by Garnavich, Loeb & Stanek and subsequently used to derive constraints on the structure of the GRB optical afterglow. In this paper, we use these structural parameters to calculate the probability of such a microlensing event in a realistic scenario, where all compact objects in the universe are associated with observable galaxies. For GRB000301C at a redshift of z =2.04, the a posteriori probability for a microlensing event with an amplitude of Δ m 0.95 mag (as observed) is 0.7 per cent (2.7 per cent) for the most plausible scenario of a flat Λ-dominated Friedmann–Robertson–Walker (FRW) universe with Ωm=0.3 and a fraction f ∗=0.2 (1.0) of dark matter in the form of compact objects. If we lower the magnification threshold to Δ m 0.10 mag, the probabilities for microlensing events of GRB afterglows increase to 17 per cent (57 per cent). We emphasize that this low probability for a microlensing signature of almost 1 mag does not exclude that the observed event in the afterglow light curve of GRB000301C was caused by microlensing, especially in light of the fact that a galaxy was found within 2 arcsec from the GRB. In that case, however, a more robust upper limit on the a posteriori probability of ≈5 per cent is found. It does show, however, that it will not be easy to create a large sample of strong GRB afterglow microlensing events for statistical studies of their physical conditions on microarcsec scales.  相似文献   

2.
3.
Cosmic gamma-ray burst spectroscopy   总被引:1,自引:0,他引:1  
A review is given of the gamma-ray burst energy spectrum measurements on Venera 11 and Venera 12 space probes. The gamma burst continuum approximates in shape thermal brems-strahlung emission of a hot plasma. The radiation temperature varies over a broad range, 50–1000 keV, for different events. Spectra of many bursts contain cyclotron absorption and/or redshifted annihilation lines. Strong variability is typically observed in both continuum and line spectra. These spectral data provide convincing evidence for the gamma-ray bursts being generated by neutron stars with superstrong magnetic fields 1012–1013 G.  相似文献   

4.
Work at Goddard is preséntly being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm–2, for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10–7 to 10–6 erg cm–2 size region where dozens of events per day are expected on a –1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. This experiment is the sequel to a single balloon flight in May 1974, in which candidate events were found to fit the –1.5 spectral extrapolation, indicating the need for positive event identification. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) Our gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the –1.5 index power law down to 2.5×10–5 erg cm–2 per event, at an occurrence rate of about once per month.Paper presented at the COSPAR Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

5.
6.
7.
8.
It is argued that the hierarchical cosmological paradigm is a viable, and insufficiently appreciated, alternative to the Big Bang paradigm. Recent observational discoveries justify renewed interest in hierarchical models of the Universe.  相似文献   

9.
A review of recent theoretical work on gamma-ray bursts is given. The emphasis is put on the localization of sources. It is concluded that sources of gamma-ray bursts must be either old Population I or Population II objects with a mechanism implying that the sources are not too far from the galactic plane. According to this conclusion the more relevant models are probably flare stars or accretion on old neutron stars, radiation of the gravitational energy of the accretion, or thermonuclear explosions.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts, held at Toulouse, France, 26–29 November, 1979.  相似文献   

10.
11.
12.
13.
The standard classical expressions for the thermal synchrotron (TS) radiation from an optically thin thermal plasma are shown to be inapplicable at photon energiesEkT since they neglect quantum effects. Quantum relationships are obtained for the TS spectral emissivity, opacity, and polarization. The quantum TS spectra are much softer atEkT than the classical ones. The TS radiation exhibits strong linear polarization in the classical domain, whereas the quantum effects reduce the polarization at highE. Expressions for the classical TS luminosity are obtained with quantum corrections which turn out to be significant for (B/B c )(kT/mc 2)10–2(B c =4.41×1013 G).Fitting the gamma-ray burst (GRB) spectra by the classical TS law (see, e.g., Lianget al., 1983) is incorrect in cases wherekT is less than the maximum detected photon energy. The continua of the GRB spectra in the rangeE20 keV-2 MeV (Mazetset al., 1981a; Andreevet al., 1983) can be fitted satisfactorily by the quantum TS spectra. The results of this fitting may suggest the existence of temperatures much higher (up to 10 MeV), and of magnetic fields much lower (down to 109 G) than those usually accepted. Under these conditions the thickness of the TS sources (103–104 cm) could be comparable with their transverse dimensions (in contrast to sources with ordinary temperatures and fields), if they lie within a few kpc. The quantum TS spectra are too soft to account for the hard components (up to tens of MeV) of the GRB spectra detected by the Solar Maximum Mission (Nolanet al., 1984), unless the temperatures are unreasonably high.A straightforward TS interpretation of the GRB spectra seems to be unrealistic. Most probably, the continuum radiation escapes from an optically thick, strongly magnetized, highly non-stationary, hot plasma near the surface of a neutron star.  相似文献   

14.
Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEE-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts, held at Toulouse, France, 26–29 November, 1979.  相似文献   

15.
While all but one of the gamma-ray bursts observed in the X-ray band showed an X-ray afterglow, about 60 per cent of them have not been detected in the optical band. We demonstrate that in many cases this is not as a result of adverse observing conditions, or delay in performing the observations. We also show that the optically non-detected afterglows are not affected by particularly large Galactic absorbing columns, since its distribution is similar for both the detected and non-detected burst subclasses. We then investigate the hypothesis that the failure of detecting the optical afterglow is due to absorption at the source location. We find that this is a marginally viable interpretation, but only if the X-ray burst and afterglow emission and the possible optical/UV flash do not destroy the dust responsible for absorption in the optical band. If dust is efficiently destroyed, we are led to conclude that bursts with no detected optical afterglow are intrinsically different. Prompt infrared observations are the key to solving this issue.  相似文献   

16.
We calculate the GeV afterglow emission expected from a few mechanisms related to gamma-ray bursts (GRBs) and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift /X-Ray Telescope, Gamma-ray Large Area Space Telescope (GLAST)/Large Area Telescope (LAT) should detect the self-Compton emission from the forward shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.  相似文献   

17.
We report on preliminary results of EXOSAT observations of three gamma-ray burst error boxes. No source was detected down to a limit of 10–10 erg cm–2s–1, assuming a black-body spectrum for the burst counterpart. Results are interpreted in the framework of current theoretical models.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

18.
《New Astronomy Reviews》2007,51(7):539-546
Cosmological gamma ray bursts (GRBs) are the brightest explosions in the Universe. Satellite detectors, such as Beppo-SAX, HETE2 and more recently Swift, have provided a wealth of data, including the localization and redshifts of subsets of GRBs. The redshift distribution has been utilized in several studies in attempts to constrain the evolving star formation rate and to probe GRB rate evolution in the high-redshift Universe. These studies find that the GRB luminosity function and/or the rate density evolve with redshift. We present a short review of the problems of constraining GRB rate evolution in the context of the complex mix of biases inherent in the redshift measurements. To disentangle GRB rate evolution from the biases prevalent in the redshift distribution will require accounting for the incompleteness of the observed redshift sample. We highlight the importance of formulating a ‘complete GRB selection function’ to account for the main sources of bias.  相似文献   

19.
Mirror matter models have been suggested recently as an explanation of neutrino puzzles and microlensing anomalies. We show that mirror supernovae can be a copious source of energetic gamma rays if one assumes that the quantum gravity scale is in the TeV range. We show that under certain assumptions plausible in the mirror models, the gamma energies could be degraded to the 10 MeV range (and perhaps even further) so as to provide an explanation of observed gamma-ray bursts. This mechanism for the origin of the gamma-ray bursts has the advantage that it neatly avoids the “baryon load problem”.  相似文献   

20.
In its first three years of operation, the COMPTEL instrument on theCompton Gamma-Ray Observatory has measured the locations (mean accuracy 1°) and spectra (0.75-30 MeV) of 18 gamma-ray bursts and continues to observe new events at a rate of 1/month. With good angular resolution and sensitivity at MeV energies, the growing COMPTEL burst catalog is an important new piece of evidence in the on-going GRB mystery. The COMPTEL burst locations are consistent with an isotropic distribution of sources, yet the spatial coincidence of two of the bursts indicates the possibility of repetition. The COMPTEL burst spectra are in most cases consistent with a single power law model with spectral index in the range 2–3. However, two bursts show evidence of a spectral break in the MeV range. Measurement of rapid variability at MeV energies in the stronger bursts provides evidence that either the sources are nearby (within the Galaxy) or the gamma-ray emission is relativistically beamed. We present an overview of analysis results obtained from the COMPTEL burst catalog concentrating on the search for burst repetition and the implications of highly variable MeV emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号